davanstrien's picture
davanstrien HF Staff
draft app
92e2ee4
raw
history blame
8.31 kB
import asyncio
import os
import re
from typing import Dict
import gradio as gr
import httpx
from cachetools import TTLCache, cached
from cashews import NOT_NONE, cache
from dotenv import load_dotenv
from httpx import AsyncClient, Limits
from huggingface_hub import (
ModelCard,
ModelFilter,
get_repo_discussions,
hf_hub_url,
list_models,
logging,
)
from huggingface_hub.utils import HfHubHTTPError, RepositoryNotFoundError
from tqdm.asyncio import tqdm as atqdm
from tqdm.auto import tqdm
import random
cache.setup("mem://")
load_dotenv()
token = os.environ["HUGGINGFACE_TOKEN"]
user_agent = os.environ["USER_AGENT"]
assert token
assert user_agent
headers = {"user-agent": user_agent, "authorization": f"Bearer {token}"}
limits = Limits(max_keepalive_connections=10, max_connections=50)
def create_client():
return AsyncClient(headers=headers, limits=limits, http2=True)
@cached(cache=TTLCache(maxsize=100, ttl=60 * 10))
def get_models(user_or_org):
model_filter = ModelFilter(library="transformers", author=user_or_org)
return list(
tqdm(
iter(
list_models(
filter=model_filter,
sort="downloads",
direction=-1,
cardData=True,
full=True,
)
)
)
)
def filter_models(models):
new_models = []
for model in tqdm(models):
try:
if card_data := model.cardData:
base_model = card_data.get("base_model", None)
if not base_model:
new_models.append(model)
except AttributeError:
continue
return new_models
MODEL_ID_RE_PATTERN = re.compile(
"This model is a fine-tuned version of \[(.*?)\]\(.*?\)"
)
BASE_MODEL_PATTERN = re.compile("base_model:\s+(.+)")
@cached(cache=TTLCache(maxsize=100, ttl=60 * 3))
def has_model_card(model):
if siblings := model.siblings:
for sibling in siblings:
if sibling.rfilename == "README.md":
return True
return False
@cached(cache=TTLCache(maxsize=100, ttl=60))
def check_already_has_base_model(text):
return bool(re.search(BASE_MODEL_PATTERN, text))
@cached(cache=TTLCache(maxsize=100, ttl=60))
def extract_model_name(text):
return match.group(1) if (match := re.search(MODEL_ID_RE_PATTERN, text)) else None
# semaphore = asyncio.Semaphore(10) # Maximum number of concurrent tasks
@cache(ttl=120, condition=NOT_NONE)
async def check_readme_for_match(model):
if not has_model_card(model):
return None
model_card_url = hf_hub_url(model.modelId, "README.md")
client = create_client()
try:
resp = await client.get(model_card_url)
if check_already_has_base_model(resp.text):
return None
else:
return None if resp.status_code != 200 else extract_model_name(resp.text)
except httpx.ConnectError:
return None
except httpx.ReadTimeout:
return None
except httpx.ConnectTimeout:
return None
except Exception as e:
print(e)
return None
@cache(ttl=120, condition=NOT_NONE)
async def check_model_exists(model, match):
client = create_client()
url = f"https://huggingface.co/api/models/{match}"
try:
resp = await client.get(url)
if resp.status_code == 200:
return {"modelid": model.modelId, "match": match}
if resp.status_code == 401:
return False
except httpx.ConnectError:
return None
except httpx.ReadTimeout:
return None
except httpx.ConnectTimeout:
return None
except Exception as e:
print(e)
return None
@cache(ttl=120, condition=NOT_NONE)
async def check_model(model):
match = await check_readme_for_match(model)
if match:
return await check_model_exists(model, match)
async def prep_tasks(models):
tasks = []
for model in models:
task = asyncio.create_task(check_model(model))
tasks.append(task)
return [await f for f in atqdm.as_completed(tasks)]
def get_data_for_user(user_or_org):
models = get_models(user_or_org)
models = filter_models(models)
results = asyncio.run(prep_tasks(models))
results = [r for r in results if r is not None]
return results
logger = logging.get_logger()
token = os.getenv("HUGGINGFACE_TOKEN")
def generate_issue_text(based_model_regex_match, opened_by=None):
return f"""This pull request aims to enrich the metadata of your model by adding [`{based_model_regex_match}`](https://huggingface.co/{based_model_regex_match}) as a `base_model` field, situated in the `YAML` block of your model's `README.md`.
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection.
**Why add this?** Enhancing your model's metadata in this way:
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub.
- **Highlights Impact** - It showcases the contributions and influences different models have within the community.
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer).
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot) by request of {opened_by}"""
def update_metadata(metadata_payload: Dict[str, str], user_making_request=None):
metadata_payload["opened_pr"] = False
regex_match = metadata_payload["match"]
repo_id = metadata_payload["modelid"]
try:
model_card = ModelCard.load(repo_id)
except RepositoryNotFoundError:
return metadata_payload
model_card.data["base_model"] = regex_match
template = generate_issue_text(regex_match, opened_by=user_making_request)
try:
if previous_discussions := list(get_repo_discussions(repo_id)):
logger.info("found previous discussions")
if prs := [
discussion
for discussion in previous_discussions
if discussion.is_pull_request
]:
logger.info("found previous pull requests")
for pr in prs:
if pr.author == "librarian-bot":
logger.info("previously opened PR")
if (
pr.title
== "Librarian Bot: Add base_model information to model"
):
logger.info("previously opened PR to add base_model tag")
metadata_payload["opened_pr"] = True
return metadata_payload
model_card.push_to_hub(
repo_id,
token=token,
repo_type="model",
create_pr=True,
commit_message="Librarian Bot: Add base_model information to model",
commit_description=template,
)
metadata_payload["opened_pr"] = True
return metadata_payload
except HfHubHTTPError:
return metadata_payload
def open_prs(profile: gr.OAuthProfile | None, user_or_org: str = None):
if not profile:
return "Please login to open PR requests"
username = profile.preferred_username
user_to_receive_prs = user_or_org or username
data = get_data_for_user(user_to_receive_prs)
if user_or_org:
random.sample(data, min(10, len(data)))
if not data:
return "No PRs to open"
results = []
for metadata_payload in data:
try:
results.append(
update_metadata(metadata_payload, user_making_request=username)
)
except Exception as e:
logger.error(e)
return f"Opened {len([r for r in results if r['opened_pr']])} PRs"
with gr.Blocks() as demo:
gr.Markdown("# Librarian Bot")
gr.LoginButton(), gr.LogoutButton()
user = gr.Textbox(label="user or org to Open PRs for")
button = gr.Button()
results = gr.Markdown()
button.click(open_prs, [user], results)
demo.queue(concurrency_count=1).launch()