|
import asyncio |
|
import os |
|
import re |
|
from typing import Dict |
|
|
|
import gradio as gr |
|
import httpx |
|
from cachetools import TTLCache, cached |
|
from cashews import NOT_NONE, cache |
|
from dotenv import load_dotenv |
|
from httpx import AsyncClient, Limits |
|
from huggingface_hub import ( |
|
ModelCard, |
|
ModelFilter, |
|
get_repo_discussions, |
|
hf_hub_url, |
|
list_models, |
|
logging, |
|
) |
|
from huggingface_hub.utils import HfHubHTTPError, RepositoryNotFoundError |
|
from tqdm.asyncio import tqdm as atqdm |
|
from tqdm.auto import tqdm |
|
import random |
|
|
|
cache.setup("mem://") |
|
|
|
|
|
load_dotenv() |
|
token = os.environ["HUGGINGFACE_TOKEN"] |
|
user_agent = os.environ["USER_AGENT"] |
|
assert token |
|
assert user_agent |
|
|
|
headers = {"user-agent": user_agent, "authorization": f"Bearer {token}"} |
|
|
|
limits = Limits(max_keepalive_connections=10, max_connections=50) |
|
|
|
|
|
def create_client(): |
|
return AsyncClient(headers=headers, limits=limits, http2=True) |
|
|
|
|
|
@cached(cache=TTLCache(maxsize=100, ttl=60 * 10)) |
|
def get_models(user_or_org): |
|
model_filter = ModelFilter(library="transformers", author=user_or_org) |
|
return list( |
|
tqdm( |
|
iter( |
|
list_models( |
|
filter=model_filter, |
|
sort="downloads", |
|
direction=-1, |
|
cardData=True, |
|
full=True, |
|
) |
|
) |
|
) |
|
) |
|
|
|
|
|
def filter_models(models): |
|
new_models = [] |
|
for model in tqdm(models): |
|
try: |
|
if card_data := model.cardData: |
|
base_model = card_data.get("base_model", None) |
|
if not base_model: |
|
new_models.append(model) |
|
except AttributeError: |
|
continue |
|
return new_models |
|
|
|
|
|
MODEL_ID_RE_PATTERN = re.compile( |
|
"This model is a fine-tuned version of \[(.*?)\]\(.*?\)" |
|
) |
|
BASE_MODEL_PATTERN = re.compile("base_model:\s+(.+)") |
|
|
|
|
|
@cached(cache=TTLCache(maxsize=100, ttl=60 * 3)) |
|
def has_model_card(model): |
|
if siblings := model.siblings: |
|
for sibling in siblings: |
|
if sibling.rfilename == "README.md": |
|
return True |
|
return False |
|
|
|
|
|
@cached(cache=TTLCache(maxsize=100, ttl=60)) |
|
def check_already_has_base_model(text): |
|
return bool(re.search(BASE_MODEL_PATTERN, text)) |
|
|
|
|
|
@cached(cache=TTLCache(maxsize=100, ttl=60)) |
|
def extract_model_name(text): |
|
return match.group(1) if (match := re.search(MODEL_ID_RE_PATTERN, text)) else None |
|
|
|
|
|
|
|
|
|
|
|
@cache(ttl=120, condition=NOT_NONE) |
|
async def check_readme_for_match(model): |
|
if not has_model_card(model): |
|
return None |
|
model_card_url = hf_hub_url(model.modelId, "README.md") |
|
client = create_client() |
|
try: |
|
resp = await client.get(model_card_url) |
|
if check_already_has_base_model(resp.text): |
|
return None |
|
else: |
|
return None if resp.status_code != 200 else extract_model_name(resp.text) |
|
except httpx.ConnectError: |
|
return None |
|
except httpx.ReadTimeout: |
|
return None |
|
except httpx.ConnectTimeout: |
|
return None |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
|
|
@cache(ttl=120, condition=NOT_NONE) |
|
async def check_model_exists(model, match): |
|
client = create_client() |
|
url = f"https://huggingface.co/api/models/{match}" |
|
try: |
|
resp = await client.get(url) |
|
if resp.status_code == 200: |
|
return {"modelid": model.modelId, "match": match} |
|
if resp.status_code == 401: |
|
return False |
|
except httpx.ConnectError: |
|
return None |
|
except httpx.ReadTimeout: |
|
return None |
|
except httpx.ConnectTimeout: |
|
return None |
|
except Exception as e: |
|
print(e) |
|
return None |
|
|
|
|
|
@cache(ttl=120, condition=NOT_NONE) |
|
async def check_model(model): |
|
match = await check_readme_for_match(model) |
|
if match: |
|
return await check_model_exists(model, match) |
|
|
|
|
|
async def prep_tasks(models): |
|
tasks = [] |
|
for model in models: |
|
task = asyncio.create_task(check_model(model)) |
|
tasks.append(task) |
|
return [await f for f in atqdm.as_completed(tasks)] |
|
|
|
|
|
def get_data_for_user(user_or_org): |
|
models = get_models(user_or_org) |
|
models = filter_models(models) |
|
results = asyncio.run(prep_tasks(models)) |
|
results = [r for r in results if r is not None] |
|
return results |
|
|
|
|
|
logger = logging.get_logger() |
|
|
|
token = os.getenv("HUGGINGFACE_TOKEN") |
|
|
|
|
|
def generate_issue_text(based_model_regex_match, opened_by=None): |
|
return f"""This pull request aims to enrich the metadata of your model by adding [`{based_model_regex_match}`](https://huggingface.co/{based_model_regex_match}) as a `base_model` field, situated in the `YAML` block of your model's `README.md`. |
|
|
|
How did we find this information? We performed a regular expression match on your `README.md` file to determine the connection. |
|
|
|
**Why add this?** Enhancing your model's metadata in this way: |
|
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub. |
|
- **Highlights Impact** - It showcases the contributions and influences different models have within the community. |
|
|
|
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer). |
|
|
|
This PR comes courtesy of [Librarian Bot](https://huggingface.co/librarian-bot) by request of {opened_by}""" |
|
|
|
|
|
def update_metadata(metadata_payload: Dict[str, str], user_making_request=None): |
|
metadata_payload["opened_pr"] = False |
|
regex_match = metadata_payload["match"] |
|
repo_id = metadata_payload["modelid"] |
|
try: |
|
model_card = ModelCard.load(repo_id) |
|
except RepositoryNotFoundError: |
|
return metadata_payload |
|
model_card.data["base_model"] = regex_match |
|
template = generate_issue_text(regex_match, opened_by=user_making_request) |
|
try: |
|
if previous_discussions := list(get_repo_discussions(repo_id)): |
|
logger.info("found previous discussions") |
|
if prs := [ |
|
discussion |
|
for discussion in previous_discussions |
|
if discussion.is_pull_request |
|
]: |
|
logger.info("found previous pull requests") |
|
for pr in prs: |
|
if pr.author == "librarian-bot": |
|
logger.info("previously opened PR") |
|
if ( |
|
pr.title |
|
== "Librarian Bot: Add base_model information to model" |
|
): |
|
logger.info("previously opened PR to add base_model tag") |
|
metadata_payload["opened_pr"] = True |
|
return metadata_payload |
|
model_card.push_to_hub( |
|
repo_id, |
|
token=token, |
|
repo_type="model", |
|
create_pr=True, |
|
commit_message="Librarian Bot: Add base_model information to model", |
|
commit_description=template, |
|
) |
|
metadata_payload["opened_pr"] = True |
|
return metadata_payload |
|
except HfHubHTTPError: |
|
return metadata_payload |
|
|
|
|
|
def open_prs(profile: gr.OAuthProfile | None, user_or_org: str = None): |
|
if not profile: |
|
return "Please login to open PR requests" |
|
username = profile.preferred_username |
|
user_to_receive_prs = user_or_org or username |
|
data = get_data_for_user(user_to_receive_prs) |
|
if user_or_org: |
|
random.sample(data, min(5, len(data))) |
|
if not data: |
|
return "No PRs to open" |
|
results = [] |
|
for metadata_payload in data: |
|
try: |
|
results.append( |
|
update_metadata(metadata_payload, user_making_request=username) |
|
) |
|
|
|
except Exception as e: |
|
logger.error(e) |
|
return f"Opened {len([r for r in results if r['opened_pr']])} PRs" |
|
|
|
|
|
description_text = """ |
|
## Welcome to the Librarian Bot Metadata Request Service |
|
|
|
⭐ The Librarian Bot Metadata Request Service allows you to request metadata updates for your models on the Hugging Face Hub. ⭐ |
|
|
|
Currently this app allows you to request for librarian bot to add metadata for the `base_model` field, situated in the `YAML` block of your model's `README.md`. |
|
|
|
### How does librarian bot find this information? |
|
|
|
We performed a regular expression match on your `README.md` file to determine the connection. |
|
|
|
### Why add this info to Model Cards? |
|
|
|
Enhancing your model's metadata in this way: |
|
- **Boosts Discoverability** - It becomes straightforward to trace the relationships between various models on the Hugging Face Hub. |
|
- **Highlights Impact** - It showcases the contributions and influences different models have within the community. |
|
|
|
For a hands-on example of how such metadata can play a pivotal role in mapping model connections, take a look at [librarian-bots/base_model_explorer](https://huggingface.co/spaces/librarian-bots/base_model_explorer). |
|
|
|
This app will allow you to request metadata for all your models or for another user or org. If you request metadata for another user or org, librarian bot will randomly select 5 models to request metadata for. |
|
""" |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML( |
|
"<h1 style='text-align:center;'><span>🤖</span> Librarian Bot Metadata Request Service <span>🤖</span></h1>" |
|
) |
|
gr.Markdown( |
|
"""<div style='text-align:center;'><img src='https://huggingface.co/spaces/davanstrien/librarian_bot_request_metadata/resolve/main/image.png' style='display:block;margin-left:auto;margin-right:auto;width:150px;'></div><p>""" |
|
) |
|
gr.Markdown(description_text) |
|
gr.LoginButton(), gr.LogoutButton() |
|
user = gr.Textbox(value=None, label="user or org to Open PRs for") |
|
button = gr.Button() |
|
results = gr.Markdown() |
|
button.click(open_prs, [user], results) |
|
|
|
|
|
demo.queue(concurrency_count=1).launch() |
|
|