Spaces:
Runtime error
Runtime error
import copy | |
import os | |
from dataclasses import asdict, dataclass | |
from datetime import datetime, timedelta | |
from functools import lru_cache | |
from json import JSONDecodeError | |
from typing import Any, Dict, List, Optional, Union | |
import backoff | |
import gradio as gr | |
import httpx | |
import orjson | |
import requests | |
from cachetools import TTLCache, cached | |
from httpx import Client | |
from httpx_caching import CachingClient, OneDayCacheHeuristic | |
# from diskcache import Cache | |
from huggingface_hub import (HfApi, hf_hub_url, list_repo_commits, logging, | |
model_info) | |
from huggingface_hub.utils import (EntryNotFoundError, GatedRepoError, | |
disable_progress_bars) | |
from requests.exceptions import HTTPError | |
from tqdm.auto import tqdm | |
from tqdm.contrib.concurrent import thread_map | |
cache = TTLCache(maxsize=500_000, ttl=timedelta(hours=24), timer=datetime.now) | |
client = Client() | |
client = CachingClient(client, heuristic=OneDayCacheHeuristic()) | |
# CACHE_DIR = "./cache" if platform == "darwin" else "/data/" | |
disable_progress_bars() | |
logging.set_verbosity_error() | |
token = os.getenv("HF_TOKEN") | |
# cache = Cache(CACHE_DIR) | |
def get_model_labels(model): | |
try: | |
url = hf_hub_url(repo_id=model, filename="config.json") | |
return list(requests.get(url).json()["label2id"].keys()) | |
except (KeyError, JSONDecodeError, AttributeError): | |
return None | |
class EngagementStats: | |
likes: int | |
downloads: int | |
created_at: datetime | |
def _get_engagement_stats(hub_id): | |
api = HfApi(token=token) | |
repo = api.repo_info(hub_id) | |
return EngagementStats( | |
likes=repo.likes, | |
downloads=repo.downloads, | |
created_at=list_repo_commits(hub_id, repo_type="model")[-1].created_at, | |
) | |
def _try_load_model_card(hub_id): | |
try: | |
url = hf_hub_url( | |
repo_id=hub_id, filename="README.md" | |
) # We grab card this way rather than via client library to improve performance | |
card_text = client.get(url).text | |
length = len(card_text) | |
except EntryNotFoundError: | |
card_text = None | |
length = None | |
except ( | |
GatedRepoError | |
): # TODO return different values to reflect gating rather than no card | |
card_text = None | |
length = None | |
return card_text, length | |
def _try_parse_card_data(hub_id): | |
data = {} | |
keys = ["license", "language", "datasets", "tags"] | |
for key in keys: | |
try: | |
value = model_info(hub_id, token=token).cardData[key] | |
data[key] = value | |
except (KeyError, AttributeError): | |
data[key] = None | |
return data | |
class ModelMetadata: | |
hub_id: str | |
tags: Optional[List[str]] | |
license: Optional[str] | |
library_name: Optional[str] | |
datasets: Optional[List[str]] | |
pipeline_tag: Optional[str] | |
labels: Optional[List[str]] | |
languages: Optional[Union[str, List[str]]] | |
engagement_stats: Optional[EngagementStats] = None | |
model_card_text: Optional[str] = None | |
model_card_length: Optional[int] = None | |
def from_hub(cls, hub_id): | |
try: | |
model = model_info(hub_id) | |
except (GatedRepoError, HTTPError): | |
return None # TODO catch gated repos and handle properly | |
card_text, length = _try_load_model_card(hub_id) | |
data = _try_parse_card_data(hub_id) | |
try: | |
library_name = model.library_name | |
except AttributeError: | |
library_name = None | |
try: | |
pipeline_tag = model.pipeline_tag | |
except AttributeError: | |
pipeline_tag = None | |
return ModelMetadata( | |
hub_id=hub_id, | |
languages=data["language"], | |
tags=data["tags"], | |
license=data["license"], | |
library_name=library_name, | |
datasets=data["datasets"], | |
pipeline_tag=pipeline_tag, | |
labels=get_model_labels(hub_id), | |
engagement_stats=_get_engagement_stats(hub_id), | |
model_card_text=card_text, | |
model_card_length=length, | |
) | |
COMMON_SCORES = { | |
"license": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You have not added a license to your models metadata" | |
), | |
}, | |
"datasets": { | |
"required": False, | |
"score": 1, | |
"missing_recommendation": ( | |
"You have not added any datasets to your models metadata" | |
), | |
}, | |
"model_card_text": { | |
"required": True, | |
"score": 3, | |
"missing_recommendation": """You haven't created a model card for your model. It is strongly recommended to have a model card for your model. \nYou can create for your model by clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)""", | |
}, | |
"tags": { | |
"required": False, | |
"score": 2, | |
"missing_recommendation": ( | |
"You don't have any tags defined in your model metadata. Tags can help" | |
" people find relevant models on the Hub. You can create for your model by" | |
" clicking [here](https://huggingface.co/HUB_ID/edit/main/README.md)" | |
), | |
}, | |
} | |
TASK_TYPES_WITH_LANGUAGES = { | |
"text-classification", | |
"token-classification", | |
"table-question-answering", | |
"question-answering", | |
"zero-shot-classification", | |
"translation", | |
"summarization", | |
"text-generation", | |
"text2text-generation", | |
"fill-mask", | |
"sentence-similarity", | |
"text-to-speech", | |
"automatic-speech-recognition", | |
"text-to-image", | |
"image-to-text", | |
"visual-question-answering", | |
"document-question-answering", | |
} | |
LABELS_REQUIRED_TASKS = { | |
"text-classification", | |
"token-classification", | |
"object-detection", | |
"audio-classification", | |
"image-classification", | |
"tabular-classification", | |
} | |
ALL_PIPELINES = { | |
"audio-classification", | |
"audio-to-audio", | |
"automatic-speech-recognition", | |
"conversational", | |
"depth-estimation", | |
"document-question-answering", | |
"feature-extraction", | |
"fill-mask", | |
"graph-ml", | |
"image-classification", | |
"image-segmentation", | |
"image-to-image", | |
"image-to-text", | |
"object-detection", | |
"question-answering", | |
"reinforcement-learning", | |
"robotics", | |
"sentence-similarity", | |
"summarization", | |
"table-question-answering", | |
"tabular-classification", | |
"tabular-regression", | |
"text-classification", | |
"text-generation", | |
"text-to-image", | |
"text-to-speech", | |
"text-to-video", | |
"text2text-generation", | |
"token-classification", | |
"translation", | |
"unconditional-image-generation", | |
"video-classification", | |
"visual-question-answering", | |
"voice-activity-detection", | |
"zero-shot-classification", | |
"zero-shot-image-classification", | |
} | |
def generate_task_scores_dict(): | |
task_scores = {} | |
for task in ALL_PIPELINES: | |
task_dict = copy.deepcopy(COMMON_SCORES) | |
if task in TASK_TYPES_WITH_LANGUAGES: | |
task_dict = { | |
**task_dict, | |
**{ | |
"languages": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You haven't defined any languages in your metadata. This" | |
f" is usually recommend for {task} task" | |
), | |
} | |
}, | |
} | |
if task in LABELS_REQUIRED_TASKS: | |
task_dict = { | |
**task_dict, | |
**{ | |
"labels": { | |
"required": True, | |
"score": 2, | |
"missing_recommendation": ( | |
"You haven't defined any labels in the config.json file" | |
f" these are usually recommended for {task}" | |
), | |
} | |
}, | |
} | |
max_score = sum(value["score"] for value in task_dict.values()) | |
task_dict["_max_score"] = max_score | |
task_scores[task] = task_dict | |
return task_scores | |
def generate_common_scores(): | |
GENERIC_SCORES = copy.deepcopy(COMMON_SCORES) | |
GENERIC_SCORES["_max_score"] = sum( | |
value["score"] for value in GENERIC_SCORES.values() | |
) | |
return GENERIC_SCORES | |
SCORES = generate_task_scores_dict() | |
GENERIC_SCORES = generate_common_scores() | |
# @cache.memoize(expire=60 * 60 * 24 * 3) # expires after 3 days | |
def _basic_check(hub_id): | |
data = ModelMetadata.from_hub(hub_id) | |
score = 0 | |
if data is None: | |
return None | |
to_fix = {} | |
if task := data.pipeline_tag: | |
task_scores = SCORES[task] | |
data_dict = asdict(data) | |
for k, v in task_scores.items(): | |
if k.startswith("_"): | |
continue | |
if data_dict[k] is None: | |
to_fix[k] = task_scores[k]["missing_recommendation"].replace( | |
"HUB_ID", hub_id | |
) | |
if data_dict[k] is not None: | |
score += v["score"] | |
max_score = task_scores["_max_score"] | |
score = score / max_score | |
( | |
f"Your model's metadata score is {round(score*100)}% based on suggested" | |
f" metadata for {task}. \n" | |
) | |
if to_fix: | |
recommendations = ( | |
"Here are some suggestions to improve your model's metadata for" | |
f" {task}: \n" | |
) | |
for v in to_fix.values(): | |
recommendations += f"\n- {v}" | |
data_dict["recommendations"] = recommendations | |
data_dict["score"] = score * 100 | |
else: | |
data_dict = asdict(data) | |
for k, v in GENERIC_SCORES.items(): | |
if k.startswith("_"): | |
continue | |
if data_dict[k] is None: | |
to_fix[k] = GENERIC_SCORES[k]["missing_recommendation"].replace( | |
"HUB_ID", hub_id | |
) | |
if data_dict[k] is not None: | |
score += v["score"] | |
score = score / GENERIC_SCORES["_max_score"] | |
data_dict["score"] = max( | |
0, (score / 2) * 100 | |
) # TODO currently setting a manual penalty for not having a task | |
return orjson.dumps(data_dict) | |
def basic_check(hub_id): | |
return _basic_check(hub_id) | |
def create_query_url(query, skip=0): | |
return f"https://huggingface.co/api/search/full-text?q={query}&limit=100&skip={skip}&type=model" | |
def get_results(query) -> Dict[Any, Any]: | |
url = create_query_url(query) | |
r = client.get(url) | |
return r.json() | |
def parse_single_result(result): | |
name, filename = result["name"], result["fileName"] | |
search_result_file_url = hf_hub_url(name, filename) | |
repo_hub_url = f"https://huggingface.co/{name}" | |
score = _basic_check(name) | |
if score is None: | |
return None | |
score = orjson.loads(score) | |
return { | |
"name": name, | |
"search_result_file_url": search_result_file_url, | |
"repo_hub_url": repo_hub_url, | |
"metadata_score": score["score"], | |
"model_card_length": score["model_card_length"], | |
"is_licensed": bool(score["license"]), | |
# "metadata_report": score | |
} | |
def filter_for_license(results): | |
for result in results: | |
if result["is_licensed"]: | |
yield result | |
def filter_for_min_model_card_length(results, min_model_card_length): | |
for result in results: | |
if result["model_card_length"] > min_model_card_length: | |
yield result | |
def filter_search_results( | |
results: List[Dict[Any, Any]], | |
min_score=None, | |
min_model_card_length=None, | |
): # TODO make code more intuitive | |
# TODO setup filters as separate functions and chain results | |
results = thread_map(parse_single_result, results) | |
for i, parsed_result in tqdm(enumerate(results)): | |
# parsed_result = parse_single_result(result) | |
if parsed_result is None: | |
continue | |
if ( | |
min_score is None | |
and min_model_card_length is not None | |
and parsed_result["model_card_length"] > min_model_card_length | |
or min_score is None | |
and min_model_card_length is None | |
): | |
yield parsed_result | |
elif min_score is not None: | |
if parsed_result["metadata_score"] <= min_score: | |
continue | |
if ( | |
min_model_card_length is not None | |
and parsed_result["model_card_length"] > min_model_card_length | |
or min_model_card_length is None | |
): | |
parsed_result["original_position"] = i | |
yield parsed_result | |
def sort_search_results( | |
filtered_search_results, | |
first_sort_key="metadata_score", | |
second_sort_key="original_position", # TODO expose these in results | |
): | |
return sorted( | |
list(filtered_search_results), | |
key=lambda x: (x[first_sort_key], x[second_sort_key]), | |
reverse=True, | |
) | |
def find_context(text, query, window_size): | |
# Split the text into words | |
words = text.split() | |
# Find the index of the query token | |
try: | |
index = words.index(query) | |
# Get the start and end indices of the context window | |
start = max(0, index - window_size) | |
end = min(len(words), index + window_size + 1) | |
return " ".join(words[start:end]) | |
except ValueError: | |
return " ".join(words[:window_size]) | |
def create_markdown(results): # TODO move to separate file | |
rows = [] | |
for result in results: | |
row = f"""# [{result['name']}]({result['repo_hub_url']}) | |
| Metadata Quality Score | Model card length | Licensed | | |
|------------------------|-------------------|----------| | |
| {result['metadata_score']:.0f}% | {result['model_card_length']} | {"✅" if result['is_licensed'] else "❌"} | | |
\n | |
*{result['text']}* | |
<hr> | |
\n""" | |
rows.append(row) | |
return "\n".join(rows) | |
def get_result_card_snippet(result): | |
try: | |
result_text = httpx.get(result["search_result_file_url"]).text | |
result["text"] = find_context(result_text, query, 100) | |
except httpx.ConnectError: | |
result["text"] = "Could not load model card" | |
return result | |
def _search_hub( | |
query: str, | |
min_score: Optional[int] = None, | |
min_model_card_length: Optional[int] = None, | |
): | |
results = get_results(query) | |
print(f"Found {len(results['hits'])} results") | |
results = results["hits"] | |
number_original_results = len(results) | |
filtered_results = filter_search_results( | |
results, min_score=min_score, min_model_card_length=min_model_card_length | |
) | |
filtered_results = sort_search_results(filtered_results) | |
# final_results = [] | |
# for result in filtered_results: | |
# result_text = httpx.get(result["search_result_file_url"]).text | |
# result["text"] = find_context(result_text, query, 100) | |
# final_results.append(result) | |
final_results = thread_map(get_result_card_snippet, filtered_results) | |
percent_of_original = round( | |
len(final_results) / number_original_results * 100, ndigits=0 | |
) | |
filtered_vs_og = f""" | |
| Number of original results | Number of results after filtering | Percentage of results after filtering | | |
| -------------------------- | --------------------------------- | -------------------------------------------- | | |
| {number_original_results} | {len(final_results)} | {percent_of_original}% | | |
""" | |
print(final_results) | |
return filtered_vs_og, create_markdown(final_results) | |
def search_hub(query: str, min_score=None, min_model_card_length=None): | |
return _search_hub(query, min_score, min_model_card_length) | |
with gr.Blocks() as demo: | |
with gr.Tab("Hub Search with metadata quality filter"): | |
gr.Markdown("# 🤗 Hub model search with metadata quality filters") | |
gr.Markdown( | |
"""This search tool relies on the full-text search API. | |
Your search is passed to this API and the returned models are assessed for metadata quality. See the next tab in the app for more info on how this is calculated. | |
If you don't specify any minimum requirements you will get back your results with metadata quality info | |
for each result. The results are ordered by: | |
- Metadata quality i.e. a model with 80% metadata quality will rank higher than one with 75% | |
- Original search order i.e. if two models have the same metadata quality the one that appeared first in the original search will rank higher. | |
If there is interest in this app I will expose more options for filtering and sorting results. | |
""" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
query = gr.Textbox("x-ray", label="Search query") | |
with gr.Column(): | |
button = gr.Button("Search") | |
with gr.Row(): | |
# literal_search = gr.Checkbox(False, label="Literal_search") | |
# TODO add option for exact matching i.e. phrase matching | |
# gr.Checkbox(False, label="Must have license?") | |
mim_model_card_length = gr.Number( | |
None, label="Minimum model card length" | |
) | |
min_metadata_score = gr.Slider(0, label="Minimum metadata score") | |
filter_results = gr.Markdown("Filter results vs original search") | |
results_markdown = gr.Markdown("Search results") | |
button.click( | |
search_hub, | |
[query, min_metadata_score, mim_model_card_length], | |
[filter_results, results_markdown], | |
) | |
# with gr.Tab("Scoring metadata quality"): | |
# with gr.Row(): | |
# gr.Markdown( | |
# f""" | |
# # Metadata quality scoring | |
# ``` | |
# {COMMON_SCORES} | |
# ``` | |
# For example, `TASK_TYPES_WITH_LANGUAGES` defines all the tasks for which it | |
# is expected to have language metadata associated with the model. | |
# ``` | |
# {TASK_TYPES_WITH_LANGUAGES} | |
# ``` | |
# """ | |
# ) | |
demo.launch() | |
# with gr.Blocks() as demo: | |
# gr.Markdown( | |
# """ | |
# # Model Metadata Checker | |
# This app will check your model's metadata for a few common issues.""" | |
# ) | |
# with gr.Row(): | |
# text = gr.Text(label="Model ID") | |
# button = gr.Button(label="Check", type="submit") | |
# with gr.Row(): | |
# gr.Markdown("Results") | |
# markdown = gr.JSON() | |
# button.click(_basic_check, text, markdown) | |
# demo.queue(concurrency_count=32) | |
# demo.launch() | |
# gr.Interface(fn=basic_check, inputs="text", outputs="markdown").launch(debug=True) | |