File size: 4,965 Bytes
cb1153d
 
 
 
b650d21
cb1153d
 
b650d21
166f16f
b650d21
9360f28
 
 
 
 
 
 
b650d21
cb1153d
 
9360f28
cb1153d
89b1afb
cb1153d
166f16f
cb1153d
 
 
 
 
 
 
1a48301
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a48301
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9bc03c
 
fcac88a
e9bc03c
 
 
fcac88a
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a48301
 
cb1153d
 
 
 
 
fcac88a
cb1153d
 
9360f28
 
c7d0bd8
fcac88a
c7d0bd8
e9bc03c
c7d0bd8
 
 
cb1153d
c7d0bd8
 
cb1153d
c7d0bd8
 
cb1153d
c7d0bd8
 
cb1153d
c7d0bd8
 
 
 
 
cb1153d
c7d0bd8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import plotly.express as px
import pandas as pd
import json
import plotly.graph_objects as go
from datasets import load_dataset
import streamlit as st

REPO_ID = "libeIO/Sciences-POC"
SAVE_PATH = "save"

with open('mapping_prompts.txt', 'r') as f:
    mapping = json.loads(f.read())

with open('mapping_noms.txt', 'r') as f:
    mapping_noms = json.loads(f.read())

if 'name' not in st.session_state.keys():
    st.session_state['name'] = 'Inconnus 1'
    
@st.cache_resource
def initialize(name):

    articles = pd.read_csv('extract_sciences_po.csv')

    with open(f"{SAVE_PATH}/{mapping[mapping_noms[name]]['save_path']}", 'r') as f : 
        out_dict = json.loads(f.read())
    
    df = pd.DataFrame.from_dict(out_dict)

    articles = pd.merge(df, articles, on='item_id', how='left')

    count_principale = df.groupby('categorie_principale').item_id.count()
    df['categorie_secondaire'] = df.apply(lambda x : x.categorie_secondaire.split(',')[0], axis=1)
    count_secondaire = df.groupby('categorie_secondaire').item_id.count()
    display_principale = count_principale.reset_index()
    display_principale.columns = ['Catégorie', 'Nombre d\'articles']
    display_secondaire = count_secondaire.reset_index()
    display_secondaire.columns = ['Catégorie', 'Nombre d\'articles']

    template ="ggplot2"

    fig = go.Figure()
        
    fig.update_layout(template=template, 
                      )

    fig.add_trace(go.Scatterpolar(
        r=display_principale['Nombre d\'articles'],
        theta=display_principale['Catégorie'],
        fill='toself',
        name='Catégorie Principale',
        marker = {'color' : 'red'},

    ))
    fig.add_trace(go.Scatterpolar(
        r=display_secondaire['Nombre d\'articles'],
        theta=display_secondaire['Catégorie'],
        fill='toself',
        name='Catégorie Secondaire',
        marker = {'color' : 'blue'},
        opacity=0.25,
    ))

    fig.update_layout(
    polar=dict(
        radialaxis=dict(
        visible=True,
        range=[0, max(max(display_principale['Nombre d\'articles']), max(display_secondaire['Nombre d\'articles']))]
        )),
    showlegend=True
    )
    fig.update_layout(legend=dict(
    yanchor="top",
    y=0.0001,
    xanchor="left",
    x=0.395
))
    
    path_prompt = mapping[mapping_noms[name]]['path_prompt']
    model = mapping[mapping_noms[name]]['client']
    with open(path_prompt, 'r') as f : 
        prompt = f.read()

    return fig, display_principale, articles, prompt, model


def display_article(article):

    url = article['url']

    colImage, colText = st.columns(2)
# try :   
    with colImage :
        st.image(article["image_url"]) # image URL
    with colText:
        if 'subhead' in article.index and article['subhead']!='nan':
            st.subheader(f":red[{article['subhead']}] [{article['titre'].rstrip('Libération').rstrip('-')[:-2]}]({url})") # Title 
        else : 
            # st.toast(article.index)
            titre_cleaned = article['titre'].removesuffix('Libération').rstrip('-').strip()
            st.subheader(f"[{titre_cleaned}]({url})") # Title 
        st.write(f"{article['description']}") # Header
        formatted_date = article["date_published"]
        if article.premium:
            st.markdown(
        f"""
        <span style='color:grey'>{formatted_date+" "} </span>  <span style='color:#eeb54e'> abonnés</span>
    """,
    unsafe_allow_html=True
    )
        else :
            st.markdown(
        f"""
        <span style='color:grey'>{formatted_date+" "} </span>
    """,
    unsafe_allow_html=True
    )
            
        st.badge(f"Catégories secondaires : {article['categorie_secondaire']}", icon=":material/info:", color="blue")
    # except :
    #     st.toast(f'Error displaying article {article.item_id}')
    #     return 
        

fig, display_principale, articles, prompt, model = initialize(st.session_state['name'])
# col1, col2, col3 = st.columns([0.5, 0.2, 0.3])

st.selectbox("Choisir groupe", [mapping[k]['auteurs'] for k in mapping.keys()], key='name')

if st.session_state['name']!=dimanov_et_al:
    with st.expander(f"Prompt for model : {model}") : 
        st.markdown(prompt)

    st.subheader('Répartition des articles par catégorie')
    # with col1:
    col1, col2 = st.columns([0.6, 0.4], vertical_alignment='center')

    with col1:
        st.plotly_chart(fig)

    with col2:
        st.dataframe(display_principale.set_index('Catégorie').sort_values(by='Nombre d\'articles', ascending=False))

    st.subheader('Exemples d\'articles')
    tabs = st.tabs(display_principale['Catégorie'].values.tolist())

    for i in range(len(tabs)):
        with tabs[i]:
            cat = display_principale['Catégorie'][i]
            for i, article in articles.loc[articles.categorie_principale==cat].sample(20, replace=True).drop_duplicates().iterrows():
                display_article(article)

else : 
    st.toast('Pas de prompt renseigné !')