Spaces:
Sleeping
Sleeping
File size: 4,965 Bytes
cb1153d b650d21 cb1153d b650d21 166f16f b650d21 9360f28 b650d21 cb1153d 9360f28 cb1153d 89b1afb cb1153d 166f16f cb1153d 1a48301 cb1153d 1a48301 cb1153d e9bc03c fcac88a e9bc03c fcac88a cb1153d 1a48301 cb1153d fcac88a cb1153d 9360f28 c7d0bd8 fcac88a c7d0bd8 e9bc03c c7d0bd8 cb1153d c7d0bd8 cb1153d c7d0bd8 cb1153d c7d0bd8 cb1153d c7d0bd8 cb1153d c7d0bd8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
import plotly.express as px
import pandas as pd
import json
import plotly.graph_objects as go
from datasets import load_dataset
import streamlit as st
REPO_ID = "libeIO/Sciences-POC"
SAVE_PATH = "save"
with open('mapping_prompts.txt', 'r') as f:
mapping = json.loads(f.read())
with open('mapping_noms.txt', 'r') as f:
mapping_noms = json.loads(f.read())
if 'name' not in st.session_state.keys():
st.session_state['name'] = 'Inconnus 1'
@st.cache_resource
def initialize(name):
articles = pd.read_csv('extract_sciences_po.csv')
with open(f"{SAVE_PATH}/{mapping[mapping_noms[name]]['save_path']}", 'r') as f :
out_dict = json.loads(f.read())
df = pd.DataFrame.from_dict(out_dict)
articles = pd.merge(df, articles, on='item_id', how='left')
count_principale = df.groupby('categorie_principale').item_id.count()
df['categorie_secondaire'] = df.apply(lambda x : x.categorie_secondaire.split(',')[0], axis=1)
count_secondaire = df.groupby('categorie_secondaire').item_id.count()
display_principale = count_principale.reset_index()
display_principale.columns = ['Catégorie', 'Nombre d\'articles']
display_secondaire = count_secondaire.reset_index()
display_secondaire.columns = ['Catégorie', 'Nombre d\'articles']
template ="ggplot2"
fig = go.Figure()
fig.update_layout(template=template,
)
fig.add_trace(go.Scatterpolar(
r=display_principale['Nombre d\'articles'],
theta=display_principale['Catégorie'],
fill='toself',
name='Catégorie Principale',
marker = {'color' : 'red'},
))
fig.add_trace(go.Scatterpolar(
r=display_secondaire['Nombre d\'articles'],
theta=display_secondaire['Catégorie'],
fill='toself',
name='Catégorie Secondaire',
marker = {'color' : 'blue'},
opacity=0.25,
))
fig.update_layout(
polar=dict(
radialaxis=dict(
visible=True,
range=[0, max(max(display_principale['Nombre d\'articles']), max(display_secondaire['Nombre d\'articles']))]
)),
showlegend=True
)
fig.update_layout(legend=dict(
yanchor="top",
y=0.0001,
xanchor="left",
x=0.395
))
path_prompt = mapping[mapping_noms[name]]['path_prompt']
model = mapping[mapping_noms[name]]['client']
with open(path_prompt, 'r') as f :
prompt = f.read()
return fig, display_principale, articles, prompt, model
def display_article(article):
url = article['url']
colImage, colText = st.columns(2)
# try :
with colImage :
st.image(article["image_url"]) # image URL
with colText:
if 'subhead' in article.index and article['subhead']!='nan':
st.subheader(f":red[{article['subhead']}] [{article['titre'].rstrip('Libération').rstrip('-')[:-2]}]({url})") # Title
else :
# st.toast(article.index)
titre_cleaned = article['titre'].removesuffix('Libération').rstrip('-').strip()
st.subheader(f"[{titre_cleaned}]({url})") # Title
st.write(f"{article['description']}") # Header
formatted_date = article["date_published"]
if article.premium:
st.markdown(
f"""
<span style='color:grey'>{formatted_date+" "} </span> <span style='color:#eeb54e'> abonnés</span>
""",
unsafe_allow_html=True
)
else :
st.markdown(
f"""
<span style='color:grey'>{formatted_date+" "} </span>
""",
unsafe_allow_html=True
)
st.badge(f"Catégories secondaires : {article['categorie_secondaire']}", icon=":material/info:", color="blue")
# except :
# st.toast(f'Error displaying article {article.item_id}')
# return
fig, display_principale, articles, prompt, model = initialize(st.session_state['name'])
# col1, col2, col3 = st.columns([0.5, 0.2, 0.3])
st.selectbox("Choisir groupe", [mapping[k]['auteurs'] for k in mapping.keys()], key='name')
if st.session_state['name']!=dimanov_et_al:
with st.expander(f"Prompt for model : {model}") :
st.markdown(prompt)
st.subheader('Répartition des articles par catégorie')
# with col1:
col1, col2 = st.columns([0.6, 0.4], vertical_alignment='center')
with col1:
st.plotly_chart(fig)
with col2:
st.dataframe(display_principale.set_index('Catégorie').sort_values(by='Nombre d\'articles', ascending=False))
st.subheader('Exemples d\'articles')
tabs = st.tabs(display_principale['Catégorie'].values.tolist())
for i in range(len(tabs)):
with tabs[i]:
cat = display_principale['Catégorie'][i]
for i, article in articles.loc[articles.categorie_principale==cat].sample(20, replace=True).drop_duplicates().iterrows():
display_article(article)
else :
st.toast('Pas de prompt renseigné !') |