File size: 5,580 Bytes
cb1153d
 
 
 
805da6a
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
805da6a
cb1153d
 
 
 
f382593
cb1153d
 
 
805da6a
 
 
 
 
cb1153d
 
 
 
f382593
cb1153d
 
 
3d58904
 
cb1153d
 
 
 
805da6a
 
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
805da6a
f382593
cb1153d
805da6a
f382593
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f382593
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2234c1
cb1153d
 
f382593
 
 
 
 
 
 
cb1153d
805da6a
 
 
f382593
805da6a
 
 
f382593
 
 
d2234c1
f382593
 
 
 
 
 
 
 
 
 
 
 
 
d2234c1
cb1153d
 
 
 
3d58904
cb1153d
f382593
 
 
 
cb1153d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd \n",
    "import requests \n",
    "import datetime as dt\n",
    "import re\n",
    "import json\n",
    "from tqdm import tqdm\n",
    "import os\n",
    "\n",
    "from openai import OpenAI"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Calculate"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "if \"OPENAI_API_KEY\" not in os.environ:\n",
    "    with open('secrets/keys.txt', 'r') as f:\n",
    "        keys = json.loads(f.read())\n",
    "else : \n",
    "    keys=os.environ"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [],
   "source": [
    "save_path = 'save'\n",
    "content_path = 'extract_sciences_po'\n",
    "\n",
    "\n",
    "def retrieve_classifications(name, mapping_prompt):\n",
    "\n",
    "    df = pd.read_csv('extract_sciences_po.csv')\n",
    "\n",
    "\n",
    "    if os.path.exists(f\"{save_path}/output_{name}.txt\"):\n",
    "        with open(f\"{save_path}/output_{name}.txt\", 'r') as f : \n",
    "            out_dict = json.loads(f.read())\n",
    "        out_df = pd.DataFrame.from_dict(out_dict)\n",
    "        out = out_dict\n",
    "    else : \n",
    "        out_df = pd.DataFrame(columns = ['item_id', 'categorie_principale', 'categorie_secondaire'])\n",
    "        out = []\n",
    "\n",
    "    df_to_process = df.loc[~df.item_id.isin(out_df.item_id)]\n",
    "\n",
    "    if mapping_prompt[name]['client']=='deepseek':\n",
    "        client = OpenAI(api_key=keys[\"DEEPSEEK_API_KEY\"], base_url=\"https://api.deepseek.com\")\n",
    "        model=\"deepseek-chat\"\n",
    "    else:\n",
    "        client=OpenAI(api_key=keys['OPENAI_API_KEY'])\n",
    "        model=\"gpt-4o\"\n",
    "\n",
    "    df_to_process = df.loc[~df.item_id.isin(out_df.item_id)]\n",
    "\n",
    "\n",
    "    with open(mapping_prompt[name]['path_prompt'], 'r') as f:\n",
    "        prompt = f.read()\n",
    "\n",
    "    with tqdm(total=df_to_process.shape[0]) as pbar:\n",
    "        for i, row in df_to_process.iterrows():\n",
    "            titre_brut = f\"{row.item_id}_\"+row.titre.lower().strip().replace(f\"\\xa0\", ' ').replace(' : ', ':').replace(' ', '_').replace('/', '')\n",
    "            \n",
    "            with open(f'{content_path}/{titre_brut}.txt', 'r') as f:\n",
    "                text = f.read()\n",
    "\n",
    "            messages = [{\"role\": \"system\", \"content\": prompt},\n",
    "                        {\"role\": \"user\", \"content\": text}]\n",
    "\n",
    "            response = client.chat.completions.create(\n",
    "                model=model,\n",
    "                messages=messages,\n",
    "                response_format={\n",
    "                    'type': 'json_object'\n",
    "                }\n",
    "            )\n",
    "            try : \n",
    "                cat_json = json.loads(response.choices[0].message.content)\n",
    "\n",
    "                out.append({\n",
    "                    'item_id':row.item_id, \n",
    "                    'categorie_principale': cat_json['categorie_principale'],\n",
    "                    'categorie_secondaire': cat_json['categorie_secondaire'],\n",
    "                })\n",
    "                \n",
    "                with open(f'{save_path}/output_{name}.txt', 'w+') as f : \n",
    "                    f.write(json.dumps(out))\n",
    "\n",
    "            except Exception as e : \n",
    "                print(f'Error with article {row.item_id}')\n",
    "                pass\n",
    "\n",
    "            \n",
    "            pbar.update(1)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "sans_titre_1\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "0it [00:00, ?it/s]"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "0it [00:00, ?it/s]\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "favarel_et_al\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      " 21%|██▏       | 41/191 [05:28<16:54,  6.76s/it]"
     ]
    }
   ],
   "source": [
    "with open('mapping_prompts.txt', 'r') as f : \n",
    "    mapping = json.loads(f.read())\n",
    "\n",
    "for name in mapping.keys():\n",
    "    print(name)\n",
    "    retrieve_classifications(name, mapping)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Ajouter images"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.11"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}