Spaces:
Running
Running
from torchvision.transforms import ToTensor | |
import torch.nn.functional as F | |
from starvector.metrics.base_metric import BaseMetric | |
import torch | |
class L2DistanceCalculator(BaseMetric): | |
def __init__(self, config=None, masked_l2=False): | |
super().__init__() | |
self.class_name = self.__class__.__name__ | |
self.config = config | |
self.metric = self.l2_distance | |
self.masked_l2 = masked_l2 | |
def l2_distance(self, **kwargs): | |
image1 = kwargs.get('gt_im') | |
image2 = kwargs.get('gen_im') | |
image1_tensor = ToTensor()(image1) | |
image2_tensor = ToTensor()(image2) | |
if self.masked_l2: | |
# Create binary masks: 0 for white pixels, 1 for non-white pixels | |
mask1 = (image1_tensor != 1).any(dim=0).float() | |
mask2 = (image2_tensor != 1).any(dim=0).float() | |
# Create a combined mask for overlapping non-white pixels | |
combined_mask = mask1 * mask2 | |
# Apply the combined mask to both images | |
image1_tensor = image1_tensor * combined_mask.unsqueeze(0) | |
image2_tensor = image2_tensor * combined_mask.unsqueeze(0) | |
# Compute mean squared error | |
mse = F.mse_loss(image1_tensor, image2_tensor) | |
return mse.item() | |