hz2475's picture
init
72f684c
# Refer https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html
# from torchmetrics.image.fid import FrechetInceptionDistance
from PIL import Image
from starvector.metrics.base_metric import BaseMetric
import torch
from torchvision import transforms
import clip
from torch.nn.functional import adaptive_avg_pool2d
from starvector.metrics.inception import InceptionV3
import numpy as np
from tqdm import tqdm
from scipy import linalg
import torchvision.transforms as TF
class FIDCalculator(BaseMetric):
def __init__(self, model_name = 'InceptionV3',):
self.class_name = self.__class__.__name__
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
self.model_name = model_name
if self.model_name == 'ViT-B/32':
self.dims = 512
model, preprocess = clip.load('ViT-B/32')
elif self.model_name == 'InceptionV3':
self.dims = 2048
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[self.dims]
model = InceptionV3([block_idx]).to(self.device)
preprocess = TF.Compose([TF.ToTensor()])
self.model = model.cuda()
self.preprocess = preprocess
def calculate_frechet_distance(self, mu1, sigma1, mu2, sigma2, eps=1e-6):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
return (diff.dot(diff) + np.trace(sigma1)
+ np.trace(sigma2) - 2 * tr_covmean)
def get_activations(self, images):
dataset = ImageDataset(images, self.preprocess)
dataloader = torch.utils.data.DataLoader(dataset, batch_size=50, shuffle=False, num_workers=4)
pred_arr = np.empty((len(images), self.dims))
start_idx = 0
for batch in tqdm(dataloader):
batch = batch.to(self.device)
with torch.no_grad():
if self.model_name == 'ViT-B/32':
pred = self.model.encode_image(batch).cpu().numpy()
elif self.model_name == 'InceptionV3':
pred = self.model(batch)[0]
# If model output is not scalar, apply global spatial average pooling.
# This happens if you choose a dimensionality not equal 2048.
if pred.size(2) != 1 or pred.size(3) != 1:
pred = adaptive_avg_pool2d(pred, output_size=(1, 1))
pred = pred.squeeze(3).squeeze(2).cpu().numpy()
pred_arr[start_idx:start_idx + pred.shape[0]] = pred
start_idx = start_idx + pred.shape[0]
return pred_arr
def calculate_activation_statistics(self, images):
act = self.get_activations(images)
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def pil_images_to_tensor(self, images_list):
"""Convert a list of PIL Images to a torch.Tensor."""
tensors_list = [self.preprocess(img) for img in images_list]
return torch.stack(tensors_list).cuda() # BxCxHxW format
def calculate_score(self, batch):
m1, s1 = self.calculate_activation_statistics(batch['gt_im'])
m2, s2 = self.calculate_activation_statistics(batch['gen_im'])
fid_value = self.calculate_frechet_distance(m1, s1, m2, s2)
return fid_value
def reset(self):
pass
class ImageDataset(torch.utils.data.Dataset):
def __init__(self, images, processor=None):
self.images = images
self.processor = processor
def __len__(self):
return len(self.images)
def __getitem__(self, i):
img = self.images[i]
img = self.processor(img)
return img