Spaces:
Running
Running
# Refer https://torchmetrics.readthedocs.io/en/stable/image/frechet_inception_distance.html | |
# from torchmetrics.image.fid import FrechetInceptionDistance | |
from PIL import Image | |
from starvector.metrics.base_metric import BaseMetric | |
import torch | |
from torchvision import transforms | |
import clip | |
from torch.nn.functional import adaptive_avg_pool2d | |
from starvector.metrics.inception import InceptionV3 | |
import numpy as np | |
from tqdm import tqdm | |
from scipy import linalg | |
import torchvision.transforms as TF | |
class FIDCalculator(BaseMetric): | |
def __init__(self, model_name = 'InceptionV3',): | |
self.class_name = self.__class__.__name__ | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
self.model_name = model_name | |
if self.model_name == 'ViT-B/32': | |
self.dims = 512 | |
model, preprocess = clip.load('ViT-B/32') | |
elif self.model_name == 'InceptionV3': | |
self.dims = 2048 | |
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[self.dims] | |
model = InceptionV3([block_idx]).to(self.device) | |
preprocess = TF.Compose([TF.ToTensor()]) | |
self.model = model.cuda() | |
self.preprocess = preprocess | |
def calculate_frechet_distance(self, mu1, sigma1, mu2, sigma2, eps=1e-6): | |
"""Numpy implementation of the Frechet Distance. | |
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
and X_2 ~ N(mu_2, C_2) is | |
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
Stable version by Dougal J. Sutherland. | |
Params: | |
-- mu1 : Numpy array containing the activations of a layer of the | |
inception net (like returned by the function 'get_predictions') | |
for generated samples. | |
-- mu2 : The sample mean over activations, precalculated on an | |
representative data set. | |
-- sigma1: The covariance matrix over activations for generated samples. | |
-- sigma2: The covariance matrix over activations, precalculated on an | |
representative data set. | |
Returns: | |
-- : The Frechet Distance. | |
""" | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert mu1.shape == mu2.shape, \ | |
'Training and test mean vectors have different lengths' | |
assert sigma1.shape == sigma2.shape, \ | |
'Training and test covariances have different dimensions' | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ('fid calculation produces singular product; ' | |
'adding %s to diagonal of cov estimates') % eps | |
print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError('Imaginary component {}'.format(m)) | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return (diff.dot(diff) + np.trace(sigma1) | |
+ np.trace(sigma2) - 2 * tr_covmean) | |
def get_activations(self, images): | |
dataset = ImageDataset(images, self.preprocess) | |
dataloader = torch.utils.data.DataLoader(dataset, batch_size=50, shuffle=False, num_workers=4) | |
pred_arr = np.empty((len(images), self.dims)) | |
start_idx = 0 | |
for batch in tqdm(dataloader): | |
batch = batch.to(self.device) | |
with torch.no_grad(): | |
if self.model_name == 'ViT-B/32': | |
pred = self.model.encode_image(batch).cpu().numpy() | |
elif self.model_name == 'InceptionV3': | |
pred = self.model(batch)[0] | |
# If model output is not scalar, apply global spatial average pooling. | |
# This happens if you choose a dimensionality not equal 2048. | |
if pred.size(2) != 1 or pred.size(3) != 1: | |
pred = adaptive_avg_pool2d(pred, output_size=(1, 1)) | |
pred = pred.squeeze(3).squeeze(2).cpu().numpy() | |
pred_arr[start_idx:start_idx + pred.shape[0]] = pred | |
start_idx = start_idx + pred.shape[0] | |
return pred_arr | |
def calculate_activation_statistics(self, images): | |
act = self.get_activations(images) | |
mu = np.mean(act, axis=0) | |
sigma = np.cov(act, rowvar=False) | |
return mu, sigma | |
def pil_images_to_tensor(self, images_list): | |
"""Convert a list of PIL Images to a torch.Tensor.""" | |
tensors_list = [self.preprocess(img) for img in images_list] | |
return torch.stack(tensors_list).cuda() # BxCxHxW format | |
def calculate_score(self, batch): | |
m1, s1 = self.calculate_activation_statistics(batch['gt_im']) | |
m2, s2 = self.calculate_activation_statistics(batch['gen_im']) | |
fid_value = self.calculate_frechet_distance(m1, s1, m2, s2) | |
return fid_value | |
def reset(self): | |
pass | |
class ImageDataset(torch.utils.data.Dataset): | |
def __init__(self, images, processor=None): | |
self.images = images | |
self.processor = processor | |
def __len__(self): | |
return len(self.images) | |
def __getitem__(self, i): | |
img = self.images[i] | |
img = self.processor(img) | |
return img |