File size: 5,384 Bytes
72f684c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
from starvector.metrics.compute_l2 import L2DistanceCalculator
from starvector.metrics.compute_LPIPS import LPIPSDistanceCalculator
from starvector.metrics.compute_SSIM import SSIMDistanceCalculator
from starvector.metrics.compute_fid import FIDCalculator
from starvector.metrics.compute_clip_score import CLIPScoreCalculator
from starvector.data.util import rasterize_svg
from starvector.metrics.util import AverageMeter
from starvector.metrics.compute_dino_score import DINOScoreCalculator
from starvector.metrics.count_token_length import CountTokenLength
import os
from tqdm import tqdm

class SVGMetrics: 
    def __init__(self, config=None):
        self.class_name = self.__class__.__name__

        default_config = {
            'L2': True,
            'Masked-L2': False,
            'LPIPS': False,
            'SSIM': False,
            'FID': False,
            'FID_clip': False,
            'CLIPScore': False,
            'CountTokenLength': False,
            'ratio_post_processed': True,
            'ratio_non_compiling': True,
            'DinoScore': True,
        }
        self.config = config or default_config

        self.metrics = {
            'L2': L2DistanceCalculator,
            'Masked-L2': lambda: L2DistanceCalculator(masked_l2=True),
            'LPIPS': LPIPSDistanceCalculator,
            'SSIM': SSIMDistanceCalculator,
            'FID': lambda: FIDCalculator(model_name='InceptionV3'),
            'FID_clip': lambda: FIDCalculator(model_name='ViT-B/32'),
            'CLIPScore': CLIPScoreCalculator,
            'CountTokenLength': CountTokenLength,
            'ratio_post_processed': AverageMeter,
            'ratio_non_compiling': AverageMeter,
            'DinoScore': DINOScoreCalculator,
        }

        self.active_metrics = {k: v() for k, v in self.metrics.items() if self.config.get(k)}

    def reset(self):
        for metric in self.active_metrics.values():
            metric.reset()

    def batch_contains_raster(self, batch):
        return "gt_im" in batch and "gen_im" in batch
    
    def batch_contains_svg(self, batch):
        return "gt_svg" in batch and "gen_svg" in batch

    def calculate_metrics(self, batch, update=True):
        if not self.batch_contains_raster(batch):
            batch["gt_im"] = [rasterize_svg(svg) for svg in batch["gt_svg"]]
            batch["gen_im"] = [rasterize_svg(svg) for svg in batch["gen_svg"]]
             
        avg_results_dict = {}
        all_results_dict = {}

        def get_sample_id(json_item):
            return json_item.get('outpath_filename') or json_item.get('sample_id')

        # initialize all_results_dict
        for i, json_item in enumerate(batch['json']):
            sample_id = get_sample_id(json_item)
            if sample_id is None:
                raise ValueError(f"Could not find 'outpath_filename' or 'sample_id' in batch['json'][{i}]")
            all_results_dict[sample_id] = {}

        for metric_name, metric in self.active_metrics.items():
            print(f"Calculating {metric_name}...")
            
            # Handle metrics that return both average and per-sample results
            if metric_name in ['L2', 'Masked-L2', 'SSIM', 'CLIPScore', 'LPIPS', 'CountTokenLength', 'DinoScore']:
                avg_result, list_result = metric.calculate_score(batch, update=update)
                avg_results_dict[metric_name] = avg_result
                
                # Store individual results
                for i, result in enumerate(list_result):
                    sample_id = get_sample_id(batch['json'][i])
                    all_results_dict[sample_id][metric_name] = result
            
            # Handle FID metrics that only return average
            elif metric_name in ['FID', 'FID_clip']:
                avg_results_dict[metric_name] = metric.calculate_score(batch)
            
            # Handle other metrics (ratio metrics)
            else:
                self._handle_ratio_metric(metric_name, metric, batch, avg_results_dict, all_results_dict)
            
            metric.reset()
        print("Average results: \n", avg_results_dict)
        return avg_results_dict, all_results_dict
    
    def calculate_fid(self, batch):
        if not self.batch_contains_raster(batch):
            batch["gt_im"] = [rasterize_svg(svg) for svg in batch["gt_svg"]]
            batch["gen_im"] = [rasterize_svg(svg) for svg in batch["gen_svg"]]
        
        return self.active_metrics['FID'].calculate_score(batch).item()

    def get_average_metrics(self):
        metrics = {}
        for metric_name, metric in self.active_metrics.items():
            if hasattr(metric, 'avg'):
                metrics[metric_name] = metric.avg
            elif hasattr(metric, 'get_average_score'):
                metrics[metric_name] = metric.get_average_score()
        return metrics

    def _handle_ratio_metric(self, metric_name, metric, batch, avg_results_dict, all_results_dict):
        """Helper method to handle ratio-based metrics."""
        metric_key = metric_name.replace('avg_', '').replace('ratio_', '')
        
        for item in batch['json']:
            sample_id = get_sample_id(item)
            value = item[metric_key]
            all_results_dict[sample_id][metric_name] = value
            metric.update(value, 1)
        
        avg_results_dict[metric_name] = metric.avg