Spaces:
Running
Running
File size: 11,591 Bytes
8b00326 43b024e 73e0168 f045267 8b00326 73e0168 f045267 6017ce1 af91d08 73e0168 43b024e f045267 31ee061 43b024e d182492 53dd325 d182492 f045267 73e0168 c6a3e13 73e0168 8b00326 73e0168 55e8035 73e0168 55e8035 43b024e af91d08 43b024e f045267 bdb8322 43b024e 73e0168 43b024e 55e8035 73e0168 43b024e 273c97d 43b024e d182492 43b024e 9088a0f 43b024e 8b00326 43b024e 8b00326 43b024e 8b00326 43b024e 8b00326 74560e6 43b024e 73e0168 af91d08 73e0168 f045267 73e0168 c6a3e13 73e0168 43b024e d182492 73e0168 43b024e 73e0168 43b024e 73e0168 43b024e 73e0168 287c8b4 73e0168 af91d08 8b00326 af91d08 73e0168 af91d08 73e0168 af91d08 73e0168 d182492 af91d08 d182492 af91d08 d182492 af91d08 f045267 73e0168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import json
import os
import re
import subprocess
import time
import yaml
import gradio as gr
import pandas as pd
import requests
from huggingface_hub import HfApi, get_token
CMD = ["python" ,"run_job.py"]
ARG_NAMES = ["<src>", "<dst>", "<query>", "[-c config]", "[-s split]", "[-p private]"]
SPACE_ID = os.environ.get("SPACE_ID") or "lhoestq/run-duckdb-jobs"
CONTENT = """
## Usage:
```bash
curl -L 'https://huggingface.co/api/jobs/<username>' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer <hf_token>' \
-d '{{
"spaceId": "{SPACE_ID}",
"command": {CMD},
"arguments": {ARG_NAMES},
"environment": {{"HF_TOKEN": <hf_token>}},
"flavor": "cpu-basic"
}}'
```
## Example:
"""
with open("README.md") as f:
METADATA = yaml.safe_load(f.read().split("---\n")[1])
TITLE = METADATA["title"]
SHORT_DESCRIPTION = METADATA.get("short_description")
EMOJI = METADATA["emoji"]
try:
process = subprocess.run(CMD + ["--help"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
HELP = not process.returncode and (process.stdout or process.stderr).decode()
except Exception:
HELP = False
DRY_RUN = bool(HELP) and bool(m :=re.search("--dry(-|_)run", HELP)) and m.group(0)
def parse_log(line: str, pbars: dict[str, float] = None):
if line.startswith("data: {"):
data = json.loads(line[len("data: "):])
data, timestamp = data["data"], data["timestamp"]
if pbars is not None and data.startswith("===== Job started at"):
pbars.pop("Starting βοΈ", None)
pbars["Running π"] = 0.0
return f"[{timestamp}] {data}\n\n"
elif pbars is not None and (percent_match := re.search("\\d+(?:\\.\\d+)?%", data)) and any(c in data.split("%")[1][:10] for c in "|ββ"):
pbars.pop("Running π", None)
[pbars.pop(desc) for desc, percent in pbars.items() if percent == 1.]
percent = float(percent_match.group(0)[:-1]) / 100
desc = data[:percent_match.start()].strip() or "Progress"
pbars[desc] = percent
else:
return f"[{timestamp}] {data}\n\n"
return ""
def dry_run(src, config, split, dst, query):
if not all([src, dst, query]):
raise gr.Error("Please fill source, destination and query.")
args = ["--src", src] + (["--config", config] if config else []) + (["--split", split] if split else []) + [ "--dst", dst, "--query", query, DRY_RUN]
cmd = CMD + args
logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n"
yield {output_markdown: logs, progress_labels: gr.Label(visible=False), details_accordion: gr.Accordion(open=True)}
process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
for line in iter(process.stdout.readline, b""):
logs += line.decode()
yield {output_markdown: logs}
def run(src, config, split, dst, query, oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None):
if not all([src, dst, query]):
raise gr.Error("Please fill source, destination and query.")
if oauth_token and profile:
token = oauth_token.token
username = profile.username
elif (token := get_token()):
username = HfApi().whoami(token=token)["name"]
else:
raise gr.Error("Please log in to run the job.")
args = ["--src", src] + (["--config", config] if config else []) + (["--split", split] if split else []) + [ "--dst", dst, "--query", query]
cmd = CMD + args
logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n"
pbars = {}
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
resp = requests.post(
f"https://huggingface.co/api/jobs/{username}",
json={
"spaceId": SPACE_ID,
"arguments": args,
"command": CMD,
"environment": {"HF_TOKEN": token},
"flavor": "cpu-basic"
},
headers={"Authorization": f"Bearer {token}"}
)
if resp.status_code != 200:
logs += resp.text
pbars = {"Finished with an error β": 1.0}
else:
job_id = resp.json()["metadata"]["job_id"]
pbars = {"Starting βοΈ": 0.0}
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
resp = requests.get(
f"https://huggingface.co/api/jobs/{username}/{job_id}/logs-stream",
headers={"Authorization": f"Bearer {token}"},
stream=True
)
for line in resp.iter_lines():
logs += parse_log(line.decode("utf-8"), pbars=pbars)
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
job_status = {"status": {"stage": "RUNNING"}}
while True:
job_status = requests.get(
f"https://huggingface.co/api/jobs/{username}/{job_id}",
headers={"Authorization": f"Bearer {token}"}
).json()
if job_status["status"]["stage"] == "RUNNING":
time.sleep(1)
else:
break
if job_status["status"]["stage"] == "COMPLETED":
pbars = {"Finished β
": 1.0}
else:
logs += f'{job_status["status"]["message"]} ({job_status["status"]["error"]})'
pbars = {"Finished with an error β": 1.0}
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
READ_FUNCTIONS = ("pl.read_parquet", "pl.read_csv", "pl.read_json")
NUM_TRENDING_DATASETS = 10
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=10):
gr.Markdown(f"# {TITLE} {EMOJI}")
if SHORT_DESCRIPTION:
gr.Markdown(SHORT_DESCRIPTION)
with gr.Column():
gr.LoginButton()
gr.Markdown(CONTENT.format(SPACE_ID=SPACE_ID, CMD=json.dumps(CMD), ARG_NAMES=json.dumps(ARG_NAMES)))
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
loading_codes_json = gr.JSON([], visible=False)
dataset_dropdown = gr.Dropdown(label="Source Dataset", allow_custom_value=True, scale=10)
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False)
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False)
with gr.Column(min_width=60):
gr.HTML("<div style='font-size: 4em;'>β</div>")
with gr.Column(scale=10):
dst_dropdown = gr.Dropdown(label="Destination Dataset", allow_custom_value=True)
query_textarea = gr.Textbox(label="SQL Query", lines=2, max_lines=300, placeholder="SELECT * FROM src;", value="SELECT * FROM src;")
with gr.Row():
run_button = gr.Button("Run", scale=10, variant="primary")
if DRY_RUN:
dry_run_button = gr.Button("Dry-Run")
progress_labels= gr.Label(visible=False, label="Progress")
with gr.Accordion("Details", open=False) as details_accordion:
output_markdown = gr.Markdown(label="Output logs")
run_button.click(run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[details_accordion, progress_labels, output_markdown])
if DRY_RUN:
dry_run_button.click(dry_run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[details_accordion, progress_labels, output_markdown])
def show_subset_dropdown(dataset: str):
if dataset and "/" not in dataset.strip().strip("/"):
return []
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_FUNCTIONS] or [[]])[0] or []
subsets = [loading_code["config_name"] for loading_code in loading_codes]
subset = (subsets or [""])[0]
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
def show_split_dropdown(subset: str, loading_codes: list[dict]):
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown])
def _fetch_datasets(request: gr.Request):
dataset = "CohereForAI/Global-MMLU"
datasets = [dataset] + [ds.id for ds in HfApi().list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1) if ds.id != dataset]
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
return {
dataset_dropdown: gr.Dropdown(choices=datasets, value=dataset),
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
}
@dataset_dropdown.select(inputs=[dataset_dropdown], outputs=[subset_dropdown, split_dropdown])
def _show_subset_dropdown(dataset: str):
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
return {
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
}
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown])
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
splits = show_split_dropdown(subset, loading_codes)
return {
split_dropdown: gr.Dropdown(**splits),
}
if HELP:
with demo.route("Help", "/help"):
gr.Markdown(f"# Help\n\n```\n{HELP}\n```")
with demo.route("Jobs", "/jobs") as page:
gr.Markdown("# Jobs")
jobs_dataframe = gr.DataFrame(datatype="markdown")
@page.load(outputs=[jobs_dataframe])
def list_jobs(oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None):
if oauth_token and profile:
token = oauth_token.token
username = profile.username
elif (token := get_token()):
username = HfApi().whoami(token=token)["name"]
else:
return pd.DataFrame({"Log in to see jobs": []})
resp = requests.get(
f"https://huggingface.co/api/jobs/{username}",
headers={"Authorization": f"Bearer {token}"}
)
return pd.DataFrame([
{
"id": job["metadata"]["id"],
"created_at": job["metadata"]["created_at"],
"stage": job["compute"]["status"]["stage"],
"output": f'[logs](https://huggingface.co/api/jobs/{username}/{job["metadata"]["id"]}/logs-stream)',
"command": str(job["compute"]["spec"]["extra"]["command"]),
"args": str(job["compute"]["spec"]["extra"]["args"]),
}
for job in resp.json()
if job["compute"]["spec"]["extra"]["input"]["spaceId"] == SPACE_ID
])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")
|