Spaces:
Running
Running
File size: 8,201 Bytes
43b024e 73e0168 f045267 73e0168 f045267 6017ce1 73e0168 43b024e f045267 31ee061 43b024e f045267 73e0168 43b024e 73e0168 43b024e 73e0168 43b024e 73e0168 43b024e f045267 bdb8322 43b024e 73e0168 43b024e 73e0168 43b024e 73e0168 f045267 73e0168 43b024e 73e0168 43b024e 73e0168 43b024e 73e0168 43b024e 73e0168 f045267 73e0168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import os
import re
import subprocess
import yaml
import gradio as gr
import requests
from huggingface_hub import HfApi, get_token
CMD = ["python" ,"run_job.py"]
with open("README.md") as f:
METADATA = yaml.safe_load(f.read().split("---\n")[1])
TITLE = METADATA["title"]
EMOJI = METADATA["emoji"]
spaceId = os.environ.get("SPACE_ID") or "lhoestq/run-duckdb"
try:
process = subprocess.run(CMD + ["--help"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
HELP = not process.returncode and (process.stdout or process.stderr).decode()
except Exception:
HELP = False
DRY_RUN = bool(HELP) and bool(m :=re.search("--dry(-|_)run", HELP)) and m.group(0)
def parse_log(line: str, pbars: dict[str, float]):
if (percent_match := re.search("\\d+(?:\\.\\d+)?%", line)) and any(c in line.split("%")[1][:10] for c in "|ββ"):
[pbars.pop(desc) for desc, percent in pbars.items() if percent == 1.]
percent = float(percent_match.group(0)[:-1]) / 100
desc = line[:percent_match.start()].strip() or "Progress"
pbars[desc] = percent
yield ""
else:
yield line
def dry_run(src, config, split, dst, query):
if not all([src, config, split, dst, query]):
raise gr.Error("Please fill source, destination and query.")
args = ["--src", src, "--config", config, "--split", split, "--dst", dst, "--query", query, DRY_RUN]
cmd = CMD + args
logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n"
yield {output_markdown: logs, progress_labels: gr.Label(visible=False)}
process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
for line in iter(process.stdout.readline, b""):
logs += line.decode()
yield {output_markdown: logs}
def run(src, config, split, dst, query, oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None):
if not all([src, config, split, dst, query]):
raise gr.Error("Please fill source, destination and query.")
if oauth_token and profile:
token = oauth_token.token
username = profile.username
elif (token := get_token()):
username = HfApi().whoami(token=token)["name"]
else:
raise gr.Error("Please log in to run the job.")
args = ["--src", src, "--config", config, "--split", split, "--dst", dst, "--query", query]
cmd = CMD + args
logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n"
pbars = {}
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
resp = requests.post(
f"https://huggingface.co/api/jobs/{username}",
json={
"spaceId": spaceId,
"arguments": args,
"command": CMD,
"environment": {},
"flavor": "cpu-basic"
},
headers={"Authorization": f"Bearer {token}"}
)
if resp.status_code != 200:
logs += resp.text
pbars = {"Finished with an error β": 1.0}
else:
job_id = resp.json()["metadata"]["job_id"]
resp = requests.get(
f"https://huggingface.co/api/jobs/{username}/{job_id}/logs-stream",
headers={"Authorization": f"Bearer {token}"}
)
for line in iter(resp.raw.readline, b""):
logs += parse_log(line.decode(), pbars=pbars)
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
pbars = {"Finished" + (" β
" if process.returncode == 0 else " with an error β"): 1.0}
yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
READ_FUNCTIONS = ("pl.read_parquet", "pl.read_csv", "pl.read_json")
NUM_TRENDING_DATASETS = 10
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=10):
gr.Markdown(f"# {TITLE} {EMOJI}")
with gr.Column():
gr.LoginButton()
with gr.Row():
with gr.Column(scale=10):
with gr.Row():
loading_codes_json = gr.JSON([], visible=False)
dataset_dropdown = gr.Dropdown(label="Source Dataset", allow_custom_value=True, scale=10)
subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False)
split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False)
with gr.Column(min_width=60):
gr.HTML("<div style='font-size: 4em;'>β</div>")
with gr.Column(scale=10):
dst_dropdown = gr.Dropdown(label="Destination Dataset", allow_custom_value=True)
query_textarea = gr.TextArea(label="SQL Query", placeholder="SELECT * FROM src;", value="SELECT * FROM src;", container=False, show_label=False)
with gr.Row():
run_button = gr.Button("Run", scale=10, variant="primary")
if DRY_RUN:
dry_run_button = gr.Button("Dry-Run")
progress_labels= gr.Label(visible=False, label="Progress")
output_markdown = gr.Markdown(label="Output logs")
run_button.click(run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[progress_labels, output_markdown])
if DRY_RUN:
dry_run_button.click(dry_run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[progress_labels, output_markdown])
def show_subset_dropdown(dataset: str):
if dataset and "/" not in dataset.strip().strip("/"):
return []
resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_FUNCTIONS] or [[]])[0] or []
subsets = [loading_code["config_name"] for loading_code in loading_codes]
subset = (subsets or [""])[0]
return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes
def show_split_dropdown(subset: str, loading_codes: list[dict]):
splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
split = (splits or [""])[0]
return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))
@demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown])
def _fetch_datasets(request: gr.Request):
dataset = "CohereForAI/Global-MMLU"
datasets = [dataset] + [ds.id for ds in HfApi().list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1) if ds.id != dataset]
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
return {
dataset_dropdown: gr.Dropdown(choices=datasets, value=dataset),
loading_codes_json: loading_codes,
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
}
@dataset_dropdown.select(inputs=[dataset_dropdown], outputs=[subset_dropdown, split_dropdown])
def _show_subset_dropdown(dataset: str):
subsets, loading_codes = show_subset_dropdown(dataset)
splits = show_split_dropdown(subsets["value"], loading_codes)
return {
subset_dropdown: gr.Dropdown(**subsets),
split_dropdown: gr.Dropdown(**splits),
}
@subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown])
def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
splits = show_split_dropdown(subset, loading_codes)
return {
split_dropdown: gr.Dropdown(**splits),
}
if HELP:
with demo.route("Help", "/help"):
gr.Markdown(f"# Help\n\n```\n{HELP}\n```")
with demo.route("Jobs", "/jobs"):
gr.Markdown("# Jobs")
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")
|