File size: 8,201 Bytes
43b024e
73e0168
f045267
73e0168
f045267
6017ce1
73e0168
43b024e
f045267
31ee061
43b024e
f045267
73e0168
 
 
 
43b024e
73e0168
 
 
 
 
 
 
 
 
43b024e
73e0168
 
 
 
 
43b024e
 
 
73e0168
 
 
 
43b024e
 
 
 
 
f045267
bdb8322
43b024e
73e0168
43b024e
73e0168
 
43b024e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73e0168
 
 
f045267
 
73e0168
 
 
 
43b024e
73e0168
43b024e
73e0168
 
 
 
 
43b024e
73e0168
43b024e
73e0168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f045267
 
73e0168
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import os
import re
import subprocess
import yaml

import gradio as gr
import requests
from huggingface_hub import HfApi, get_token


CMD = ["python" ,"run_job.py"]

with open("README.md") as f:
    METADATA = yaml.safe_load(f.read().split("---\n")[1])
TITLE = METADATA["title"]
EMOJI = METADATA["emoji"]
spaceId = os.environ.get("SPACE_ID") or "lhoestq/run-duckdb"

try:
    process = subprocess.run(CMD + ["--help"], stdout=subprocess.PIPE, stderr=subprocess.PIPE)
    HELP = not process.returncode and (process.stdout or process.stderr).decode()
except Exception:
    HELP = False

DRY_RUN = bool(HELP) and bool(m :=re.search("--dry(-|_)run", HELP)) and m.group(0)

def parse_log(line: str, pbars: dict[str, float]):
    if (percent_match := re.search("\\d+(?:\\.\\d+)?%", line)) and any(c in line.split("%")[1][:10] for c in "|β–ˆβ–Œ"):
        [pbars.pop(desc) for desc, percent in pbars.items() if percent == 1.]
        percent = float(percent_match.group(0)[:-1]) / 100
        desc = line[:percent_match.start()].strip() or "Progress"
        pbars[desc] = percent
        yield ""
    else:
        yield line

def dry_run(src, config, split, dst, query):
    if not all([src, config, split, dst, query]):
        raise gr.Error("Please fill source, destination and query.")
    args = ["--src", src, "--config", config, "--split", split, "--dst", dst, "--query", query, DRY_RUN]
    cmd = CMD + args
    logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n"
    yield {output_markdown: logs, progress_labels: gr.Label(visible=False)}
    process = subprocess.Popen(cmd, stdout=subprocess.PIPE)
    for line in iter(process.stdout.readline, b""):
        logs += line.decode()
        yield {output_markdown: logs}

def run(src, config, split, dst, query, oauth_token: gr.OAuthToken | None, profile: gr.OAuthProfile | None):
    if not all([src, config, split, dst, query]):
        raise gr.Error("Please fill source, destination and query.")
    if oauth_token and profile:
        token = oauth_token.token
        username = profile.username
    elif (token := get_token()):
        username = HfApi().whoami(token=token)["name"]
    else:
        raise gr.Error("Please log in to run the job.")
    args = ["--src", src, "--config", config, "--split", split, "--dst", dst, "--query", query]
    cmd = CMD + args
    logs = "Job:\n\n```bash\n" + " ".join('"' + arg.replace('"', '\"""') + '"' if " " in arg else arg for arg in cmd) + "\n```\nOutput:\n\n"
    pbars = {}
    yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
    resp = requests.post(
        f"https://huggingface.co/api/jobs/{username}",
        json={
            "spaceId": spaceId,
            "arguments": args,
            "command":  CMD,
            "environment": {},
            "flavor": "cpu-basic" 
        },
        headers={"Authorization": f"Bearer {token}"}
    )
    if resp.status_code != 200:
        logs += resp.text
        pbars = {"Finished with an error ❌": 1.0}
    else:
        job_id = resp.json()["metadata"]["job_id"]
        resp = requests.get(
            f"https://huggingface.co/api/jobs/{username}/{job_id}/logs-stream",
            headers={"Authorization": f"Bearer {token}"}
        )
        for line in iter(resp.raw.readline, b""):
            logs += parse_log(line.decode(), pbars=pbars)
            yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}
        pbars = {"Finished" + (" βœ…" if process.returncode == 0 else " with an error ❌"): 1.0}
    yield {output_markdown: logs, progress_labels: gr.Label(pbars, visible=bool(pbars))}

READ_FUNCTIONS = ("pl.read_parquet", "pl.read_csv", "pl.read_json")
NUM_TRENDING_DATASETS = 10

with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=10):
            gr.Markdown(f"# {TITLE} {EMOJI}")
        with gr.Column():
            gr.LoginButton()
    with gr.Row():
        with gr.Column(scale=10):
            with gr.Row():
                loading_codes_json = gr.JSON([], visible=False)
                dataset_dropdown = gr.Dropdown(label="Source Dataset", allow_custom_value=True, scale=10)
                subset_dropdown = gr.Dropdown(info="Subset", allow_custom_value=True, show_label=False, visible=False)
                split_dropdown = gr.Dropdown(info="Split", allow_custom_value=True, show_label=False, visible=False)
        with gr.Column(min_width=60):
            gr.HTML("<div style='font-size: 4em;'>β†’</div>")
        with gr.Column(scale=10):
            dst_dropdown = gr.Dropdown(label="Destination Dataset", allow_custom_value=True)
    query_textarea = gr.TextArea(label="SQL Query", placeholder="SELECT * FROM src;", value="SELECT * FROM src;", container=False, show_label=False)
    with gr.Row():
        run_button = gr.Button("Run", scale=10, variant="primary")
        if DRY_RUN:
            dry_run_button = gr.Button("Dry-Run")
    progress_labels= gr.Label(visible=False, label="Progress")
    output_markdown = gr.Markdown(label="Output logs")
    run_button.click(run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[progress_labels, output_markdown])
    if DRY_RUN:
        dry_run_button.click(dry_run, inputs=[dataset_dropdown, subset_dropdown, split_dropdown, dst_dropdown, query_textarea], outputs=[progress_labels, output_markdown])

    def show_subset_dropdown(dataset: str):
        if dataset and "/" not in dataset.strip().strip("/"):
            return []
        resp = requests.get(f"https://datasets-server.huggingface.co/compatible-libraries?dataset={dataset}", timeout=3).json()
        loading_codes = ([lib["loading_codes"] for lib in resp.get("libraries", []) if lib["function"] in READ_FUNCTIONS] or [[]])[0] or []
        subsets = [loading_code["config_name"] for loading_code in loading_codes]
        subset = (subsets or [""])[0]
        return dict(choices=subsets, value=subset, visible=len(subsets) > 1, key=hash(str(loading_codes))), loading_codes

    def show_split_dropdown(subset: str, loading_codes: list[dict]):
        splits = ([list(loading_code["arguments"]["splits"]) for loading_code in loading_codes if loading_code["config_name"] == subset] or [[]])[0]
        split = (splits or [""])[0]
        return dict(choices=splits, value=split, visible=len(splits) > 1, key=hash(str(loading_codes) + subset))

    @demo.load(outputs=[dataset_dropdown, loading_codes_json, subset_dropdown, split_dropdown])
    def _fetch_datasets(request: gr.Request):
        dataset = "CohereForAI/Global-MMLU"
        datasets = [dataset] + [ds.id for ds in HfApi().list_datasets(limit=NUM_TRENDING_DATASETS, sort="trendingScore", direction=-1) if ds.id != dataset]
        subsets, loading_codes = show_subset_dropdown(dataset)
        splits = show_split_dropdown(subsets["value"], loading_codes)
        return {
            dataset_dropdown: gr.Dropdown(choices=datasets, value=dataset),
            loading_codes_json: loading_codes,
            subset_dropdown: gr.Dropdown(**subsets),
            split_dropdown: gr.Dropdown(**splits),
        }
    
    @dataset_dropdown.select(inputs=[dataset_dropdown], outputs=[subset_dropdown, split_dropdown])
    def _show_subset_dropdown(dataset: str):
        subsets, loading_codes = show_subset_dropdown(dataset)
        splits = show_split_dropdown(subsets["value"], loading_codes)
        return {
            subset_dropdown: gr.Dropdown(**subsets),
            split_dropdown: gr.Dropdown(**splits),
        }
    
    @subset_dropdown.select(inputs=[dataset_dropdown, subset_dropdown, loading_codes_json], outputs=[split_dropdown])
    def _show_split_dropdown(dataset: str, subset: str, loading_codes: list[dict]):
        splits = show_split_dropdown(subset, loading_codes)
        return {
            split_dropdown: gr.Dropdown(**splits),
        }

if HELP:
    with demo.route("Help", "/help"):
        gr.Markdown(f"# Help\n\n```\n{HELP}\n```")

with demo.route("Jobs", "/jobs"):
    gr.Markdown("# Jobs")

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0")