Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image
|
3 |
+
from ultralytics import YOLO
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
+
import torch
|
6 |
+
|
7 |
+
# Load YOLO model
|
8 |
+
yolo_model = YOLO('runs/detect/makkah-yolo/weights/best.pt') # Replace with your relative path or uploaded model if needed
|
9 |
+
|
10 |
+
# Load ALLaM in 8-bit to reduce memory
|
11 |
+
bnb_config = BitsAndBytesConfig(load_in_8bit=True)
|
12 |
+
llm_model = AutoModelForCausalLM.from_pretrained(
|
13 |
+
"ALLaM-AI/ALLaM-7B-Instruct-preview",
|
14 |
+
quantization_config=bnb_config,
|
15 |
+
device_map="auto",
|
16 |
+
trust_remote_code=True
|
17 |
+
)
|
18 |
+
tokenizer = AutoTokenizer.from_pretrained("ALLaM-AI/ALLaM-7B-Instruct-preview", trust_remote_code=True)
|
19 |
+
|
20 |
+
# Streamlit App UI
|
21 |
+
st.title("๐๐ Makkah Landmark Detection + Arabic Cultural Explanation")
|
22 |
+
st.write("Upload an image to detect landmarks in Makkah and receive a cultural explanation in Arabic using ALLaM.")
|
23 |
+
|
24 |
+
uploaded_file = st.file_uploader("๐ท Upload an image...", type=["jpg", "jpeg", "png"])
|
25 |
+
|
26 |
+
if uploaded_file:
|
27 |
+
img = Image.open(uploaded_file)
|
28 |
+
st.image(img, caption="Uploaded Image", use_column_width=True)
|
29 |
+
|
30 |
+
temp_image_path = "temp_uploaded_image.jpg"
|
31 |
+
img.save(temp_image_path)
|
32 |
+
|
33 |
+
with st.spinner("๐ Detecting landmarks..."):
|
34 |
+
results = yolo_model.predict(temp_image_path, conf=0.25, save=False)
|
35 |
+
|
36 |
+
detections = results[0].names
|
37 |
+
boxes = results[0].boxes.cls
|
38 |
+
detected_classes = [detections[int(cls_id)] for cls_id in boxes]
|
39 |
+
|
40 |
+
if detected_classes:
|
41 |
+
landmarks = 'ุ '.join(detected_classes)
|
42 |
+
user_prompt = f"ู
ู ูุถููุ ุชุญุฏุซ ุนู ุฃูู
ูุฉ ุงูู
ุนุงูู
ุงูุชุงููุฉ ูู ู
ูุฉ ุงูู
ูุฑู
ุฉ: {landmarks}."
|
43 |
+
|
44 |
+
st.write("๐ **Arabic Prompt:**")
|
45 |
+
st.info(user_prompt)
|
46 |
+
|
47 |
+
with st.spinner("๐ค Generating Arabic explanation..."):
|
48 |
+
messages = [{"role": "user", "content": user_prompt}]
|
49 |
+
inputs = tokenizer.apply_chat_template(messages, tokenize=False)
|
50 |
+
inputs = tokenizer(inputs, return_tensors='pt', return_token_type_ids=False)
|
51 |
+
inputs = {k: v.to('cuda') for k, v in inputs.items()}
|
52 |
+
|
53 |
+
response = llm_model.generate(
|
54 |
+
**inputs,
|
55 |
+
max_new_tokens=512,
|
56 |
+
do_sample=True,
|
57 |
+
top_k=50,
|
58 |
+
top_p=0.95,
|
59 |
+
temperature=0.6
|
60 |
+
)
|
61 |
+
|
62 |
+
output_text = tokenizer.batch_decode(response, skip_special_tokens=True)[0]
|
63 |
+
st.write("๐ **Explanation in Arabic:**")
|
64 |
+
st.success(output_text)
|
65 |
+
else:
|
66 |
+
st.warning("๐ซ No landmarks detected in this image.")
|