Spaces:
Runtime error
Runtime error
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
from flask import Flask, request, render_template, send_file
|
3 |
+
import pandas as pd
|
4 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForCausalLM
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
from datetime import datetime
|
8 |
+
from datasets import load_dataset
|
9 |
+
from huggingface_hub import login
|
10 |
+
|
11 |
+
# Load Hugging Face token from environment variable
|
12 |
+
HUGGING_FACE_TOKEN = os.getenv("HUGGING_FACE_TOKEN")
|
13 |
+
|
14 |
+
# Authenticate with Hugging Face
|
15 |
+
if HUGGING_FACE_TOKEN:
|
16 |
+
login(token=HUGGING_FACE_TOKEN)
|
17 |
+
else:
|
18 |
+
raise ValueError("Hugging Face token not found. Please set the HUGGING_FACE_TOKEN environment variable.")
|
19 |
+
|
20 |
+
# Initialize the Flask application
|
21 |
+
app = Flask(__name__)
|
22 |
+
|
23 |
+
# Set up the device (CUDA or CPU)
|
24 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
25 |
+
|
26 |
+
# Optional: Set up logging for debugging
|
27 |
+
logging.basicConfig(level=logging.DEBUG)
|
28 |
+
|
29 |
+
# Define a function to classify user persona based on the selected model
|
30 |
+
def classify_persona(text, model, tokenizer):
|
31 |
+
inputs = tokenizer(text, return_tensors='pt', truncation=True, padding=True, max_length=512).to(device)
|
32 |
+
outputs = model(**inputs)
|
33 |
+
logits = outputs.logits
|
34 |
+
|
35 |
+
# Convert logits to probabilities
|
36 |
+
probabilities = torch.nn.functional.softmax(logits, dim=1)
|
37 |
+
|
38 |
+
# Print logits and probabilities for debugging
|
39 |
+
print(f"Logits: {logits}")
|
40 |
+
print(f"Probabilities: {probabilities}")
|
41 |
+
|
42 |
+
# Get the predicted classes
|
43 |
+
predictions = torch.argmax(probabilities, dim=1)
|
44 |
+
|
45 |
+
persona_mapping = {0: 'Persona A', 1: 'Persona B', 2: 'Persona C'}
|
46 |
+
|
47 |
+
# If there are multiple predictions, return the first one (or handle them as needed)
|
48 |
+
predicted_personas = [persona_mapping.get(pred.item(), 'Unknown') for pred in predictions]
|
49 |
+
|
50 |
+
# For now, let's assume you want the first prediction
|
51 |
+
return predicted_personas[0]
|
52 |
+
|
53 |
+
# Define the function to determine if a message is polarized
|
54 |
+
def is_polarized(message):
|
55 |
+
# If message is a list, join it into a single string
|
56 |
+
if isinstance(message, list):
|
57 |
+
message = ' '.join(message)
|
58 |
+
|
59 |
+
polarized_keywords = ["always", "never", "everyone", "nobody", "worst", "best"]
|
60 |
+
return any(keyword in message.lower() for keyword in polarized_keywords)
|
61 |
+
|
62 |
+
|
63 |
+
# Define the function to generate AI-based nudges using the selected transformer model
|
64 |
+
def generate_nudge(message, persona, topic, model, tokenizer, model_type, max_length=50, min_length=30, temperature=0.7, top_p=0.9, repetition_penalty=1.1):
|
65 |
+
# Ensure min_length is less than or equal to max_length
|
66 |
+
min_length = min(min_length, max_length)
|
67 |
+
|
68 |
+
if model_type == "seq2seq":
|
69 |
+
prompt = f"As an AI assistant, provide a nudge for this {persona} message in a {topic} discussion: {message}"
|
70 |
+
inputs = tokenizer(prompt, return_tensors='pt', max_length=1024, truncation=True).to(device)
|
71 |
+
generated_ids = model.generate(
|
72 |
+
inputs['input_ids'],
|
73 |
+
max_length=max_length,
|
74 |
+
min_length=min_length,
|
75 |
+
temperature=temperature,
|
76 |
+
top_p=top_p,
|
77 |
+
repetition_penalty=repetition_penalty,
|
78 |
+
do_sample=True,
|
79 |
+
num_beams=4,
|
80 |
+
early_stopping=True
|
81 |
+
)
|
82 |
+
nudge = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
83 |
+
elif model_type == "causal":
|
84 |
+
prompt = f"{message} [AI Nudge]:"
|
85 |
+
inputs = tokenizer(prompt, return_tensors='pt').to(device)
|
86 |
+
generated_ids = model.generate(
|
87 |
+
inputs['input_ids'],
|
88 |
+
max_length=max_length,
|
89 |
+
min_length=min_length,
|
90 |
+
temperature=temperature,
|
91 |
+
top_p=top_p,
|
92 |
+
repetition_penalty=repetition_penalty,
|
93 |
+
do_sample=True,
|
94 |
+
)
|
95 |
+
nudge = tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
96 |
+
else:
|
97 |
+
nudge = "This model is not suitable for generating text."
|
98 |
+
|
99 |
+
return nudge
|
100 |
+
|
101 |
+
|
102 |
+
@app.route('/', methods=['GET', 'POST'])
|
103 |
+
def home():
|
104 |
+
logging.debug("Home route accessed.")
|
105 |
+
if request.method == 'POST':
|
106 |
+
logging.debug("POST request received.")
|
107 |
+
try:
|
108 |
+
# Get the model names from the form
|
109 |
+
persona_model_name = request.form.get('persona_model_name', 'roberta-base')
|
110 |
+
nudge_model_name = request.form.get('nudge_model_name', 'facebook/bart-large-cnn')
|
111 |
+
logging.debug(f"Selected persona model: {persona_model_name}")
|
112 |
+
logging.debug(f"Selected nudge model: {nudge_model_name}")
|
113 |
+
|
114 |
+
# Load persona classification model
|
115 |
+
persona_model = AutoModelForSequenceClassification.from_pretrained(persona_model_name, num_labels=3).to(device)
|
116 |
+
persona_tokenizer = AutoTokenizer.from_pretrained(persona_model_name)
|
117 |
+
|
118 |
+
# Load nudge generation model
|
119 |
+
if "bart" in nudge_model_name or "t5" in nudge_model_name:
|
120 |
+
model_type = "seq2seq"
|
121 |
+
nudge_model = AutoModelForSeq2SeqLM.from_pretrained(nudge_model_name).to(device)
|
122 |
+
elif "gpt2" in nudge_model_name:
|
123 |
+
model_type = "causal"
|
124 |
+
nudge_model = AutoModelForCausalLM.from_pretrained(nudge_model_name).to(device)
|
125 |
+
else:
|
126 |
+
logging.error("Unsupported model selected.")
|
127 |
+
return "Selected model is not supported for text generation tasks.", 400
|
128 |
+
|
129 |
+
nudge_tokenizer = AutoTokenizer.from_pretrained(nudge_model_name)
|
130 |
+
logging.debug("Models and tokenizers loaded.")
|
131 |
+
|
132 |
+
use_online_dataset = request.form.get('use_online_dataset') == 'yes'
|
133 |
+
|
134 |
+
if use_online_dataset:
|
135 |
+
# Attempt to load the specified online dataset
|
136 |
+
dataset_name = request.form.get('dataset_name')
|
137 |
+
logging.debug(f"Selected online dataset: {dataset_name}")
|
138 |
+
|
139 |
+
if dataset_name == 'personachat':
|
140 |
+
# Use AlekseyKorshuk/persona-chat if 'personachat' is selected
|
141 |
+
dataset_name = 'AlekseyKorshuk/persona-chat'
|
142 |
+
|
143 |
+
dataset = load_dataset(dataset_name)
|
144 |
+
df = pd.DataFrame(dataset['train']) # Use the training split for processing
|
145 |
+
df = df.rename(columns=lambda x: x.strip().lower())
|
146 |
+
df = df[['utterances', 'personality']] # Modify this according to the dataset structure
|
147 |
+
df.columns = ['topic', 'post_reply'] # Standardize column names for processing
|
148 |
+
|
149 |
+
else:
|
150 |
+
uploaded_file = request.files['file']
|
151 |
+
if uploaded_file.filename != '':
|
152 |
+
logging.debug(f"File uploaded: {uploaded_file.filename}")
|
153 |
+
|
154 |
+
df = pd.read_csv(uploaded_file)
|
155 |
+
df.columns = df.columns.str.strip().str.lower()
|
156 |
+
|
157 |
+
if 'post_reply' not in df.columns:
|
158 |
+
logging.error("Required column 'post_reply' is missing in the CSV.")
|
159 |
+
return "The uploaded CSV file must contain 'post_reply' column.", 400
|
160 |
+
|
161 |
+
augmented_rows = []
|
162 |
+
for _, row in df.iterrows():
|
163 |
+
if 'user_persona' not in row or pd.isna(row['user_persona']):
|
164 |
+
# Classify user persona if not provided
|
165 |
+
row['user_persona'] = classify_persona(row['post_reply'], persona_model, persona_tokenizer)
|
166 |
+
augmented_rows.append(row.to_dict())
|
167 |
+
|
168 |
+
if is_polarized(row['post_reply']):
|
169 |
+
nudge = generate_nudge(row['post_reply'], row['user_persona'], row['topic'], nudge_model, nudge_tokenizer, model_type)
|
170 |
+
augmented_rows.append({
|
171 |
+
'topic': row['topic'],
|
172 |
+
'user_persona': 'AI Nudge',
|
173 |
+
'post_reply': nudge
|
174 |
+
})
|
175 |
+
|
176 |
+
augmented_df = pd.DataFrame(augmented_rows)
|
177 |
+
logging.debug("Processing completed.")
|
178 |
+
|
179 |
+
# Generate the output filename
|
180 |
+
persona_model_name = request.form.get('persona_model_name', 'roberta-base').split('/')[-1].replace('-', '_')
|
181 |
+
nudge_model_name = request.form.get('nudge_model_name', 'facebook/bart-large-cnn').split('/')[-1].replace('-', '_')
|
182 |
+
current_time = datetime.now().strftime("%Y%m%d_%H%M%S")
|
183 |
+
output_filename = f"DepolNudge_{persona_model_name}_{nudge_model_name}_{current_time}.csv"
|
184 |
+
|
185 |
+
# Instead of saving to a directory, create the CSV in memory
|
186 |
+
csv_buffer = io.BytesIO()
|
187 |
+
augmented_df.to_csv(csv_buffer, index=False)
|
188 |
+
csv_buffer.seek(0) # Reset buffer position to the start
|
189 |
+
|
190 |
+
# Directly send the file for download without saving to a specific folder
|
191 |
+
return send_file(
|
192 |
+
csv_buffer,
|
193 |
+
as_attachment=True,
|
194 |
+
download_name=output_filename,
|
195 |
+
mimetype='text/csv'
|
196 |
+
)
|
197 |
+
except Exception as e:
|
198 |
+
logging.error(f"Error processing the request: {e}", exc_info=True)
|
199 |
+
return "There was an error processing your request.", 500
|
200 |
+
|
201 |
+
logging.debug("Rendering index.html")
|
202 |
+
return render_template('index.html')
|
203 |
+
|
204 |
+
if __name__ == '__main__':
|
205 |
+
app.run(debug=True)
|