Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,62 +6,71 @@ def process_file(file):
|
|
6 |
# 1. Validate extension
|
7 |
name = file.name.lower()
|
8 |
if not name.endswith(('.xls', '.xlsx', '.xlsm')):
|
9 |
-
return "Error: Please upload
|
10 |
|
11 |
-
# 2. Read
|
12 |
-
df = pd.read_excel(file.name,
|
|
|
|
|
|
|
13 |
|
14 |
-
# 3.
|
15 |
-
|
16 |
"Usage", "District", "Address", "Longitude", "Latitude",
|
17 |
"Floor", "Unit", "Area", "PriceInMillion",
|
18 |
"InstrumentDate", "Year", "WeekNumber",
|
19 |
"DeliveryDate", "MemoNo."
|
20 |
]
|
21 |
-
output_df = pd.DataFrame("", index=range(len(df)), columns=
|
22 |
|
23 |
-
# 4.
|
24 |
-
#
|
25 |
-
output_df["
|
26 |
-
|
27 |
-
output_df["Floor"] = df.iloc[:, 1]
|
28 |
-
# Column 3 → Unit
|
29 |
-
output_df["Unit"] = df.iloc[:, 2]
|
30 |
-
# Column 4 → Area
|
31 |
-
output_df["Area"] = df.iloc[:, 3]
|
32 |
-
# Column 5 → PriceInMillion
|
33 |
-
output_df["PriceInMillion"] = df.iloc[:, 4]
|
34 |
-
# Column 6 → District (mapped from PricePerSquareFeet)
|
35 |
-
output_df["District"] = df.iloc[:, 5]
|
36 |
-
# Column 7 → InstrumentDate
|
37 |
-
output_df["InstrumentDate"] = pd.to_datetime(df.iloc[:, 6], errors="coerce")
|
38 |
|
39 |
-
# 5.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
output_df["Year"] = output_df["InstrumentDate"].dt.year
|
41 |
output_df["WeekNumber"] = output_df["InstrumentDate"].dt.isocalendar().week
|
42 |
|
43 |
-
#
|
44 |
-
#
|
45 |
-
# output_df["
|
46 |
-
# output_df["MemoNo."] = df.get("MemoNo.", "")
|
47 |
-
|
48 |
-
# 7. Generate output filename: data-clean-YYMMDD.xlsx
|
49 |
-
date_suffix = datetime.now().strftime("%y%m%d")
|
50 |
-
out_name = f"data-clean-{date_suffix}.xlsx"
|
51 |
|
52 |
-
#
|
|
|
|
|
53 |
output_df.to_excel(out_name, index=False)
|
54 |
|
55 |
return output_df, out_name
|
56 |
|
57 |
-
with gr.Blocks(
|
58 |
-
gr.Markdown("##
|
59 |
with gr.Row():
|
60 |
-
|
61 |
btn = gr.Button("Process")
|
62 |
with gr.Row():
|
63 |
-
|
64 |
-
|
65 |
-
btn.click(
|
66 |
|
67 |
demo.launch()
|
|
|
6 |
# 1. Validate extension
|
7 |
name = file.name.lower()
|
8 |
if not name.endswith(('.xls', '.xlsx', '.xlsm')):
|
9 |
+
return "Error: Please upload .xls/.xlsx/.xlsm file.", None
|
10 |
|
11 |
+
# 2. Read without header, drop blank columns, and skip header rows if needed
|
12 |
+
df = pd.read_excel(file.name, header=None) # read raw data :contentReference[oaicite:7]{index=7}
|
13 |
+
df = df.dropna(axis=1, how="all") # drop fully empty cols :contentReference[oaicite:8]{index=8}
|
14 |
+
# If your file has descriptive top rows, you can also do:
|
15 |
+
# df = pd.read_excel(file.name, header=None, skiprows=2) # adjust as needed :contentReference[oaicite:9]{index=9}
|
16 |
|
17 |
+
# 3. Define output schema
|
18 |
+
headers = [
|
19 |
"Usage", "District", "Address", "Longitude", "Latitude",
|
20 |
"Floor", "Unit", "Area", "PriceInMillion",
|
21 |
"InstrumentDate", "Year", "WeekNumber",
|
22 |
"DeliveryDate", "MemoNo."
|
23 |
]
|
24 |
+
output_df = pd.DataFrame("", index=range(len(df)), columns=headers)
|
25 |
|
26 |
+
# 4. Map positional columns via iloc
|
27 |
+
output_df["Usage"] = df.iloc[:, 0] # Column1 → Usage :contentReference[oaicite:10]{index=10}
|
28 |
+
output_df["Floor"] = df.iloc[:, 1] # Column2 → Floor :contentReference[oaicite:11]{index=11}
|
29 |
+
output_df["Unit"] = df.iloc[:, 2] # Column3 → Unit :contentReference[oaicite:12]{index=12}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
# 5. Clean and map Area (extract number from "507 ft2")
|
32 |
+
output_df["Area"] = (
|
33 |
+
df.iloc[:, 3]
|
34 |
+
.astype(str)
|
35 |
+
.str.extract(r"(\d+\.?\d*)", expand=False) # extract numeric :contentReference[oaicite:13]{index=13}
|
36 |
+
.astype(float)
|
37 |
+
)
|
38 |
+
|
39 |
+
# 6. Map and clean PriceInMillion (remove non‐digits then convert)
|
40 |
+
output_df["PriceInMillion"] = pd.to_numeric(
|
41 |
+
df.iloc[:, 4].replace(r"[^0-9\.]", "", regex=True),
|
42 |
+
errors="coerce"
|
43 |
+
) # robust numeric conversion :contentReference[oaicite:14]{index=14}
|
44 |
+
|
45 |
+
# 7. Map PricePerSquareFeet into "District" if that’s your intended slot
|
46 |
+
output_df["District"] = df.iloc[:, 5] # Column6 → District :contentReference[oaicite:15]{index=15}
|
47 |
+
|
48 |
+
# 8. Parse InstrumentDate and derive Year & WeekNumber
|
49 |
+
output_df["InstrumentDate"] = pd.to_datetime(
|
50 |
+
df.iloc[:, 6], errors="coerce"
|
51 |
+
) # robust parsing :contentReference[oaicite:16]{index=16}
|
52 |
output_df["Year"] = output_df["InstrumentDate"].dt.year
|
53 |
output_df["WeekNumber"] = output_df["InstrumentDate"].dt.isocalendar().week
|
54 |
|
55 |
+
# 9. (Optional) Leave DeliveryDate & MemoNo. blank or map if available
|
56 |
+
# output_df["DeliveryDate"] = ...
|
57 |
+
# output_df["MemoNo."] = ...
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# 10. Save output with data‑clean‑YYMMDD filename
|
60 |
+
suffix = datetime.now().strftime("%y%m%d")
|
61 |
+
out_name = f"data-clean-{suffix}.xlsx"
|
62 |
output_df.to_excel(out_name, index=False)
|
63 |
|
64 |
return output_df, out_name
|
65 |
|
66 |
+
with gr.Blocks() as demo:
|
67 |
+
gr.Markdown("## Excel → data‑clean Mapping Tool")
|
68 |
with gr.Row():
|
69 |
+
inp = gr.File(label="Upload .xls/.xlsx/.xlsm")
|
70 |
btn = gr.Button("Process")
|
71 |
with gr.Row():
|
72 |
+
df_view = gr.Dataframe(label="Mapped Data")
|
73 |
+
df_download = gr.File(label="Download Output")
|
74 |
+
btn.click(process_file, inputs=[inp], outputs=[df_view, df_download])
|
75 |
|
76 |
demo.launch()
|