Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -71,21 +71,23 @@ def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
|
71 |
"SUM(reward) AS total_rewards " \
|
72 |
"FROM game_results"
|
73 |
df = pd.read_sql_query(query, conn)
|
|
|
|
|
|
|
|
|
74 |
else:
|
75 |
query = "SELECT COUNT(DISTINCT episode) AS games_played, " \
|
76 |
"SUM(reward) AS total_rewards " \
|
77 |
"FROM game_results WHERE game_name = ?"
|
78 |
df = pd.read_sql_query(query, conn, params=(game_name,))
|
|
|
|
|
|
|
|
|
79 |
|
80 |
# Keep division by 2 for total rewards
|
81 |
df["total_rewards"] = df["total_rewards"].fillna(0).astype(float) / 2
|
82 |
|
83 |
-
# Fetch average generation time from moves table
|
84 |
-
gen_time_query = """
|
85 |
-
SELECT AVG(generation_time) FROM moves WHERE game_name = ?
|
86 |
-
"""
|
87 |
-
avg_gen_time = conn.execute(gen_time_query, (game_name,)).fetchone()[0] or 0
|
88 |
-
|
89 |
# Ensure avg_gen_time has decimals
|
90 |
avg_gen_time = round(avg_gen_time, 3)
|
91 |
|
@@ -105,9 +107,9 @@ def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
|
105 |
vs_random_rate = (wins_vs_random / total_vs_random * 100) if total_vs_random > 0 else 0
|
106 |
|
107 |
df.insert(0, "agent_name", model_name) # Ensure agent_name is the first column
|
108 |
-
df
|
109 |
df["avg_generation_time (sec)"] = avg_gen_time
|
110 |
-
df["vs_random"] = round(vs_random_rate, 2)
|
111 |
|
112 |
all_stats.append(df)
|
113 |
conn.close()
|
@@ -115,7 +117,7 @@ def extract_leaderboard_stats(game_name: str) -> pd.DataFrame:
|
|
115 |
leaderboard_df = pd.concat(all_stats, ignore_index=True) if all_stats else pd.DataFrame()
|
116 |
|
117 |
if leaderboard_df.empty:
|
118 |
-
leaderboard_df = pd.DataFrame(columns=["agent_name", "# games", "total rewards", "avg_generation_time (sec)", "win-rate", "vs_random"])
|
119 |
|
120 |
return leaderboard_df
|
121 |
|
@@ -133,7 +135,7 @@ with gr.Blocks() as interface:
|
|
133 |
gr.Markdown("# LLM Model Leaderboard\nTrack performance across different games!")
|
134 |
available_games = get_available_games()
|
135 |
leaderboard_game_dropdown = gr.Dropdown(available_games, label="Select Game", value="Aggregated Performance")
|
136 |
-
leaderboard_table = gr.Dataframe(headers=["agent_name", "# games", "total rewards", "avg_generation_time (sec)", "win-rate", "vs_random"])
|
137 |
generate_button = gr.Button("Generate Leaderboard JSON")
|
138 |
download_component = gr.File(label="Download Leaderboard JSON")
|
139 |
refresh_button = gr.Button("Refresh Leaderboard")
|
|
|
71 |
"SUM(reward) AS total_rewards " \
|
72 |
"FROM game_results"
|
73 |
df = pd.read_sql_query(query, conn)
|
74 |
+
|
75 |
+
# Use avg_generation_time from a specific game (e.g., Kuhn Poker)
|
76 |
+
game_query = "SELECT AVG(generation_time) FROM moves WHERE game_name = 'kuhn_poker'"
|
77 |
+
avg_gen_time = conn.execute(game_query).fetchone()[0] or 0
|
78 |
else:
|
79 |
query = "SELECT COUNT(DISTINCT episode) AS games_played, " \
|
80 |
"SUM(reward) AS total_rewards " \
|
81 |
"FROM game_results WHERE game_name = ?"
|
82 |
df = pd.read_sql_query(query, conn, params=(game_name,))
|
83 |
+
|
84 |
+
# Fetch average generation time from moves table
|
85 |
+
gen_time_query = "SELECT AVG(generation_time) FROM moves WHERE game_name = ?"
|
86 |
+
avg_gen_time = conn.execute(gen_time_query, (game_name,)).fetchone()[0] or 0
|
87 |
|
88 |
# Keep division by 2 for total rewards
|
89 |
df["total_rewards"] = df["total_rewards"].fillna(0).astype(float) / 2
|
90 |
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
# Ensure avg_gen_time has decimals
|
92 |
avg_gen_time = round(avg_gen_time, 3)
|
93 |
|
|
|
107 |
vs_random_rate = (wins_vs_random / total_vs_random * 100) if total_vs_random > 0 else 0
|
108 |
|
109 |
df.insert(0, "agent_name", model_name) # Ensure agent_name is the first column
|
110 |
+
df.insert(1, "agent_type", agent_type) # Ensure agent_type is second column
|
111 |
df["avg_generation_time (sec)"] = avg_gen_time
|
112 |
+
df["win vs_random (%)"] = round(vs_random_rate, 2)
|
113 |
|
114 |
all_stats.append(df)
|
115 |
conn.close()
|
|
|
117 |
leaderboard_df = pd.concat(all_stats, ignore_index=True) if all_stats else pd.DataFrame()
|
118 |
|
119 |
if leaderboard_df.empty:
|
120 |
+
leaderboard_df = pd.DataFrame(columns=["agent_name", "agent_type", "# games", "total rewards", "avg_generation_time (sec)", "win-rate", "win vs_random (%)"])
|
121 |
|
122 |
return leaderboard_df
|
123 |
|
|
|
135 |
gr.Markdown("# LLM Model Leaderboard\nTrack performance across different games!")
|
136 |
available_games = get_available_games()
|
137 |
leaderboard_game_dropdown = gr.Dropdown(available_games, label="Select Game", value="Aggregated Performance")
|
138 |
+
leaderboard_table = gr.Dataframe(headers=["agent_name", "agent_type", "# games", "total rewards", "avg_generation_time (sec)", "win-rate", "win vs_random (%)"])
|
139 |
generate_button = gr.Button("Generate Leaderboard JSON")
|
140 |
download_component = gr.File(label="Download Leaderboard JSON")
|
141 |
refresh_button = gr.Button("Refresh Leaderboard")
|