lcipolina commited on
Commit
20e7bbb
·
verified ·
1 Parent(s): 82d3f5f

Upload llm_registry.py

Browse files
Files changed (1) hide show
  1. agents/llm_registry.py +34 -0
agents/llm_registry.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ llm_registry.py - Central llm registry
3
+ """
4
+
5
+ from transformers import pipeline
6
+
7
+ # Registry of available LLMs
8
+ # These are just examples of models that run fast enough to work in this proof of concept.
9
+ # But they don't give us good results.
10
+ # Ideally we would use 'intruct-finetuned' models.
11
+ # I have tried some models and these actually worked well (i.e. followed the prompt):
12
+ # microsoft/Phi-3-mini-4k-instruct, Qwen/Qwen2.5-Coder-32B-Instruct,
13
+ # Qwen/Qwen2.5-72B-Instruct, mistralai/Mistral-7B-Instruct-v0.3,dolly-v2-3b, dolly-v2-12b
14
+
15
+ # Note. Need to read the models documentation on how to prompt them. See example for Microsoft's Phi.
16
+
17
+
18
+ LLM_REGISTRY = {
19
+ "gpt2": {
20
+ "display_name": "GPT-2",
21
+ "description": "A medium-sized transformer-based language model by OpenAI.",
22
+ "model_loader": lambda: pipeline("text-generation", model="gpt2"),
23
+ },
24
+ "flan_t5_small": {
25
+ "display_name": "FLAN-T5 Small",
26
+ "description": "A fine-tuned T5 model optimized for instruction-following tasks.",
27
+ "model_loader": lambda: pipeline("text-generation", model="google/flan-t5-small"),
28
+ },
29
+ "distilgpt2": {
30
+ "display_name": "DistilGPT-2",
31
+ "description": "A smaller and faster version of GPT-2.",
32
+ "model_loader": lambda: pipeline("text-generation", model="distilgpt2"),
33
+ },
34
+ }