Spaces:
Sleeping
Sleeping
from smolagents import CodeAgent, DuckDuckGoSearchTool, HfApiModel, load_tool, tool | |
import datetime | |
import requests | |
import pytz | |
import yaml | |
import time | |
from tools.final_answer import FinalAnswerTool | |
from huggingface_hub import InferenceClient | |
from pydub.generators import WhiteNoise | |
from pydub import AudioSegment | |
import gradio as gr | |
from Gradio_UI import GradioUI | |
import os | |
from huggingface_hub import login | |
hf_token = os.getenv("HF_TOKEN") # Fetch secret from Hugging Face Space | |
if hf_token: | |
login(hf_token) | |
else: | |
print("⚠️ Hugging Face API token is missing! Set HF_TOKEN in Space secrets.") | |
# Sound generation tool | |
def generate_sound(sound_type: str, duration: int) -> str: | |
"""Generates a simple sound based on the specified type and duration. | |
Args: | |
sound_type: Type of sound to generate (e.g., 'rain', 'car', 'white_noise'). | |
duration: Duration of the sound in seconds. | |
Returns: | |
Path to the generated audio file. | |
""" | |
try: | |
duration_ms = duration * 1000 # Convert to milliseconds | |
if sound_type == "rain": | |
sound = WhiteNoise().to_audio_segment(duration=duration_ms).low_pass_filter(5000) | |
else: | |
return f"Unsupported sound type: {sound_type}" | |
output_path = f"/tmp/{sound_type}_{duration}s.wav" | |
sound.export(output_path, format="wav") | |
return output_path | |
except Exception as e: | |
return f"Error generating sound: {str(e)}" | |
# Time zone tool | |
def get_current_time_in_timezone(timezone: str) -> str: | |
"""A tool that fetches the current local time in a specified timezone. | |
Args: | |
timezone: A string representing a valid timezone (e.g., 'America/New_York'). | |
""" | |
try: | |
tz = pytz.timezone(timezone) | |
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S") | |
return f"The current local time in {timezone} is: {local_time}" | |
except Exception as e: | |
return f"Error fetching time for timezone '{timezone}': {str(e)}" | |
final_answer = FinalAnswerTool() | |
model = HfApiModel( | |
max_tokens=2096, | |
temperature=0.5, | |
model_id='Qwen/Qwen2.5-Coder-32B-Instruct', | |
custom_role_conversions=None, | |
token= hf_token | |
) | |
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True) | |
with open("prompts.yaml", 'r') as stream: | |
prompt_templates = yaml.safe_load(stream) | |
agent = CodeAgent( | |
model=model, | |
tools=[final_answer, generate_sound], # Add your tool | |
max_steps=6, | |
verbosity_level=1, | |
grammar=None, | |
planning_interval=None, | |
name=None, | |
description=None, | |
prompt_templates=prompt_templates | |
) | |
# Start the UI with processing time display | |
def launch_with_processing_time(): | |
def wrapped_launch(): | |
start_time = time.time() | |
print("Processing request...") | |
# Define a simple Gradio UI | |
def generate_and_return_file(sound_type, duration): | |
file_path = generate_sound(sound_type, duration) | |
return file_path # Return the file for download | |
interface = gr.Interface( | |
fn=generate_and_return_file, | |
inputs=[gr.Textbox(label="Sound Type"), gr.Number(label="Duration (seconds)")], | |
outputs=gr.File(label="Download Sound File"), | |
) | |
interface.launch() | |
end_time = time.time() | |
print(f"Processing completed in {end_time - start_time:.2f} seconds") | |
wrapped_launch() | |
launch_with_processing_time() |