import gradio as gr import os from PIL import Image import numpy as np import torch import pickle from transformers import AutoProcessor from src.model import MMEBModel from src.arguments import ModelArguments QUERY_DIR = "imgs/queries" IMAGE_DIR = "imgs/candidates" image_paths = [os.path.join(IMAGE_DIR, f) for f in os.listdir(IMAGE_DIR) if f.endswith((".jpg", ".png"))] global IMAGE_TOKEN, TOP_N IMAGE_TOKEN = "<|image_1|>" TOP_N = 5 device = "cuda" if torch.cuda.is_available() else "cpu" print(f"device: {device}") def load_model(): global IMAGE_TOKEN model_args = ModelArguments( # model_name="/fs-computility/ai-shen/kilab-shared/liubangwei/ckpt/my_hf/IDMR-2B", model_name="lbw18601752667/IDMR-2B", model_backbone="internvl_2_5", ) if model_args.model_backbone == "phi35v": processor = AutoProcessor.from_pretrained( model_args.model_name, trust_remote_code=True, num_crops=model_args.num_crops, ) processor.tokenizer.padding_side = "right" elif model_args.model_backbone == "internvl_2_5": from src.vlm_backbone.intern_vl import InternVLProcessor from transformers import AutoTokenizer, AutoImageProcessor tokenizer = AutoTokenizer.from_pretrained( model_args.model_name, trust_remote_code=True ) image_processor = AutoImageProcessor.from_pretrained( model_args.model_name, trust_remote_code=True, use_fast=False ) processor = InternVLProcessor( image_processor=image_processor, tokenizer=tokenizer ) IMAGE_TOKEN = "" model = MMEBModel.load(model_args) model = model.to(device, dtype=torch.bfloat16) model.eval() return model, processor model, processor = load_model() def get_inputs(processor, text, image_path=None, image=None): if image_path: image = Image.open(image_path) if image is None: text = text.replace(IMAGE_TOKEN, "") inputs = processor( text=text, images=[image] if image else None, return_tensors="pt", max_length=1024, truncation=True ) inputs = {key: value.to(device) for key, value in inputs.items()} inputs["image_flags"] = torch.tensor([1 if image else 0], dtype=torch.long).to(device) if image is None: del inputs['pixel_values'] return inputs def encode_image_library(image_paths): embeddings_dict = {} for img_path in image_paths: text = f"{IMAGE_TOKEN}\n Represent the given image." print(f"text: {text}") inputs = get_inputs(processor, text, image_path=img_path) with torch.no_grad(), torch.autocast(device_type=device, dtype=torch.bfloat16): output = model(tgt=inputs) img_name = os.path.basename(img_path) embeddings_dict[img_name] = output["tgt_reps"].float().cpu().numpy() return embeddings_dict def save_embeddings(embeddings, file_path="image_embeddings.pkl"): with open(file_path, "wb") as f: pickle.dump(embeddings, f) def load_embeddings(file_path="image_embeddings.pkl"): with open(file_path, "rb") as f: return pickle.load(f) def cosine_similarity(query_embedding, embeddings): similarity = np.sum(query_embedding * embeddings, axis=-1) return similarity def retrieve_images(query_text, query_image, top_n=TOP_N): if query_text: query_text = f"{IMAGE_TOKEN}\n {query_text}" else: query_text = f"{IMAGE_TOKEN}\n Represent the given image." if query_image is not None: image = Image.fromarray(query_image) else: image = None inputs = get_inputs(processor, query_text, image=image) print(f"inputs: {inputs}") with torch.no_grad(), torch.autocast(device_type=device, dtype=torch.bfloat16): query_embedding = model(qry=inputs)["qry_reps"].float().cpu().numpy() embeddings_dict = load_embeddings() img_names = [] embeddings = [] for img_name in os.listdir(IMAGE_DIR): if img_name in embeddings_dict: img_names.append(img_name) embeddings.append(embeddings_dict[img_name]) embeddings = np.stack(embeddings) similarity = cosine_similarity(query_embedding, embeddings) similarity = similarity.T print(f"cosine_similarity: {similarity}") top_indices = np.argsort(-similarity).squeeze(0)[:top_n] print(f"top_indices: {top_indices}") return [os.path.join(IMAGE_DIR, img_names[i]) for i in top_indices] def demo(query_text, query_image): # print(f"query_text: {query_text}, query_image: {query_image}, type(query_image): {type(query_image)}, image shape: {query_image.shape if query_image is not None else 'None'}") retrieved_images = retrieve_images(query_text, query_image) return [Image.open(img) for img in retrieved_images] def load_examples(): examples = [] image_files = [f for f in os.listdir(QUERY_DIR) if f.endswith((".jpg", ".png"))] for img_file in image_files: img_path = os.path.join(QUERY_DIR, img_file) txt_file = os.path.splitext(img_file)[0] + ".txt" txt_path = os.path.join(QUERY_DIR, txt_file) if os.path.exists(txt_path): with open(txt_path, 'r', encoding='utf-8') as f: query_text = f.read().strip().replace("<|image_1|>\n", "") examples.append([query_text, img_path]) return examples iface = gr.Interface( fn=demo, inputs=[ gr.Textbox(placeholder="Enter your query text here...", label="Query Text"), gr.Image(label="Query Image", type="numpy") ], outputs=gr.Gallery(label=f"Retrieved Images (Top {TOP_N})", columns=3), examples=load_examples(), title="Instance-Driven Multi-modal Retrieval (IDMR) Demo", description="Enter a query text or upload an image to retrieve relevant images from the library. You can click on the examples below to try them out." ) if not os.path.exists("image_embeddings.pkl"): embeddings = encode_image_library(image_paths) save_embeddings(embeddings) iface.launch()