IDMR-demo / src /collator.py
liubangwei
init IDMR demo
1855cc2
raw
history blame contribute delete
11.6 kB
import logging
from typing import List, Tuple
from dataclasses import dataclass
from transformers import ProcessorMixin, AutoProcessor, AutoTokenizer
from src.arguments import DataArguments, ModelArguments
import torch
logger = logging.getLogger(__name__)
@dataclass
class TrainCollator:
data_args: DataArguments
model_args: ModelArguments
processor: ProcessorMixin
def __call__(self, examples):
"""
:param examples: [{qry:..., qry_image:..., pos_text:..., pos_image:...}] * batch_size
"""
qry_inputs = self._get_batch_inputs(examples, 0, 1)
pos_inputs = self._get_batch_inputs(examples, 2, 3)
if "hard_neg" in self.data_args.dataset_name:
hard_neg_inputs = self._get_batch_inputs(examples, 4, 5)
return qry_inputs, pos_inputs, hard_neg_inputs
return qry_inputs, pos_inputs
def _get_batch_inputs(self, examples, text_idx, image_idx):
input_ids, pixel_values = [], []
image_mask, image_sizes, image_grid_thw = [], [], []
for example in examples:
text, image = example[text_idx], example[image_idx]
has_image = image is not None
image_mask.append(1 if has_image else 0)
# 统一processor调用逻辑
if self.model_args.model_backbone == "llava_next":
inputs = self.processor(
text=text,
images=image if has_image else None,
return_tensors="pt",
max_length=self.data_args.max_len,
truncation=True
)
elif self.model_args.model_backbone in ["qwen", "qwen2_vl"]:
inputs = self.processor(
text=[text],
images=[image] if has_image else None,
return_tensors="pt",
max_length=self.data_args.max_len,
truncation=True
)
else:
inputs = self.processor(
text=text,
images=[image] if has_image else None,
return_tensors="pt",
max_length=self.data_args.max_len,
truncation=True
)
if has_image:
if self.model_args.model_backbone == "qwen":
pixel_values.append(inputs['pixel_values'].unsqueeze(0))
else:
pixel_values.append(inputs['pixel_values'])
input_ids.append(inputs["input_ids"].squeeze(0).unsqueeze(1))
if "image_sizes" in inputs:
image_sizes.append(inputs['image_sizes'])
if "image_grid_thw" in inputs:
image_grid_thw.append(inputs['image_grid_thw'])
input_ids = torch._C._nn.pad_sequence(
input_ids,
batch_first=True,
padding_value=self.processor.tokenizer.pad_token_id
).squeeze(2)
attention_mask = input_ids.ne(self.processor.tokenizer.pad_token_id)
inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'image_mask': torch.tensor(image_mask, dtype=torch.float)
}
if any(image_mask):
if pixel_values:
inputs['pixel_values'] = torch.cat(pixel_values, dim=0)
if image_sizes:
inputs['image_sizes'] = torch.cat(image_sizes, dim=0)
if image_grid_thw:
inputs['image_grid_thw'] = torch.cat(image_grid_thw, dim=0)
if self.model_args.model_backbone == "internvl_2_5":
inputs['image_flags'] = inputs['image_mask'].to(torch.long)
return inputs
@dataclass
class EvalCollator:
data_args: DataArguments
model_args: ModelArguments
processor: ProcessorMixin
def __call__(self, examples):
"""
:param examples: qry, qry_image, pos_text, pos_image
"""
inputs = self._get_batch_inputs(examples)
return inputs
def _get_batch_inputs(self, examples):
input_ids, pixel_values, image_sizes = [], [], []
image_mask = []
image_exist = False
for example in examples:
text, image = example
has_image = image is not None
image_mask.append(1 if has_image else 0)
if self.model_args.model_backbone == "internvl_2_5":
inputs = self.processor(
text=text,
images=[image] if has_image else None,
return_tensors="pt",
max_length=self.data_args.max_len,
truncation=True
)
input_ids.append(inputs["input_ids"].squeeze(0).unsqueeze(1))
if has_image:
pixel_values.append(inputs['pixel_values'])
if 'image_sizes' in inputs:
image_sizes.append(inputs['image_sizes'])
continue
if image is None:
if self.model_args.model_backbone == "llava_next":
inputs = self.processor(images=None, text=text, return_tensors="pt")
else:
inputs = self.processor(text, None, return_tensors="pt", max_length=self.data_args.max_len,
truncation=True)
input_ids.append(inputs["input_ids"].squeeze(0).unsqueeze(1))
pixel_values.append(None)
image_sizes.append(None)
else:
image_exist = True
if self.model_args.model_backbone == "llava_next":
inputs = self.processor(images=image, text=text, return_tensors="pt")
else:
inputs = self.processor(text, [image], return_tensors="pt", max_length=self.data_args.max_len, truncation=True)
input_ids.append(inputs["input_ids"].squeeze(0).unsqueeze(1))
pixel_values.append(inputs['pixel_values'])
image_sizes.append(inputs['image_sizes'])
input_ids = torch._C._nn.pad_sequence(
input_ids, batch_first=True, padding_value=self.processor.tokenizer.pad_token_id
).squeeze(2)
attention_mask = input_ids.ne(self.processor.tokenizer.pad_token_id)
if self.model_args.model_backbone == "internvl_2_5":
inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'image_mask': torch.tensor(image_mask, dtype=torch.float)
}
if any(image_mask):
if pixel_values:
inputs['pixel_values'] = torch.cat(pixel_values, dim=0)
if image_sizes:
inputs['image_sizes'] = torch.cat(image_sizes, dim=0)
inputs['image_flags'] = inputs['image_mask'].to(torch.long)
del inputs['image_mask']
else:
if not image_exist:
dummy_pixel_values = torch.zeros(input_ids.shape[0], 1)
dummy_image_sizes = torch.ones(input_ids.shape[0], 1)
inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'pixel_values': dummy_pixel_values,
'image_sizes': dummy_image_sizes,
}
else:
pixel_values_shape = list(set(v.shape for v in pixel_values if v is not None))[0]
pixel_values = [v if v is not None else torch.zeros(pixel_values_shape) for v in pixel_values]
pixel_values = torch.cat(pixel_values, dim=0)
image_sizes_shape = list(set(v.shape for v in image_sizes if v is not None))[0]
image_sizes = [v if v is not None else torch.ones(image_sizes_shape) for v in image_sizes]
image_sizes = torch.cat(image_sizes, dim=0)
inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'pixel_values': pixel_values,
'image_sizes': image_sizes,
}
return inputs
@dataclass
class CLIPCollator:
data_args: DataArguments
vis_processors: AutoProcessor
txt_processors: AutoTokenizer
def __call__(self, examples):
"""
:param examples: qry, qry_image, pos_text, pos_image
"""
inputs = self._get_batch_inputs(examples)
return inputs
def _get_batch_inputs(self, examples):
input_ids, pixel_values, attention_mask = [], [], []
image_exist, text_exist = False, False
for example in examples:
text, image = example
if image is not None:
if image.mode == 'L':
image = image.convert('RGB')
image_inputs = self.vis_processors(images=image, return_tensors="pt")
image_exist = True
pixel_values.append(image_inputs['pixel_values'])
if text:
text_exist = True
text_inputs = self.txt_processors(text, padding=getattr(self.data_args, "padding", True), max_length=self.data_args.max_len, truncation=True, return_tensors="pt")
input_ids.append(text_inputs["input_ids"].squeeze(0))
if text_exist:
input_ids = torch.nn.utils.rnn.pad_sequence(
input_ids, batch_first=True, padding_value=self.txt_processors.pad_token_id
)
attention_mask = input_ids.ne(self.txt_processors.pad_token_id)
if image_exist:
pixel_values = torch.cat(pixel_values, dim=0)
if text_exist and image_exist:
assert input_ids.size()[0]==pixel_values.size()[0]
inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'pixel_values': pixel_values,
}
return inputs
@dataclass
class OpenCLIPCollator:
data_args: DataArguments
vis_processors: AutoProcessor
txt_processors: AutoTokenizer
def __call__(self, examples):
"""
:param examples: qry, qry_image, pos_text, pos_image
"""
inputs = self._get_batch_inputs(examples)
return inputs
def _get_batch_inputs(self, examples):
input_ids, pixel_values, attention_mask = [], [], []
image_exist, text_exist = False, False
for example in examples:
text, image = example
if image is not None:
if image.mode == 'L':
image = image.convert('RGB')
image_inputs = self.vis_processors(image).unsqueeze(0)
image_exist = True
pixel_values.append(image_inputs)
if text:
text_exist = True
text_inputs = self.txt_processors(text)
input_ids.append(text_inputs)
if text_exist:
input_ids = torch.cat(input_ids, dim=0)
attention_mask = input_ids.ne(0)
if image_exist:
pixel_values = torch.cat(pixel_values, dim=0)
if text_exist and image_exist:
assert input_ids.size()[0]==pixel_values.size()[0]
inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'pixel_values': pixel_values,
}
return inputs