Spaces:
Sleeping
Sleeping
File size: 8,663 Bytes
a72a7d4 1855cc2 a72a7d4 1855cc2 a72a7d4 1855cc2 a72a7d4 1855cc2 a72a7d4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
from transformers.trainer import Trainer, TRAINING_ARGS_NAME
import torch.distributed as dist
from typing import Optional
import os
import torch
from src.loss import SimpleContrastiveLoss, DistributedContrastiveLoss, HardNegativeContrastiveLoss, DistributedHardNegativeContrastiveLoss
from itertools import repeat
from grad_cache.grad_cache import GradCache
MAX_INPUT_ID = int(1e9)
LLAVA_IMAGE_TOKEN_ID = 32000
class MMEBTrainer(Trainer):
def __init__(self, *args, **kwargs):
super(MMEBTrainer, self).__init__(*args, **kwargs)
self.is_ddp = dist.is_initialized()
self._dist_loss_scale_factor = dist.get_world_size() if self.is_ddp else 1
def compute_loss(self, model, inputs, *args, **kwargs):
if self.args.hard_neg:
qry_inputs, tgt_inputs, neg_inputs = inputs
return model(qry=qry_inputs, tgt=tgt_inputs, neg=neg_inputs)
qry_inputs, tgt_inputs = inputs
return model(qry=qry_inputs, tgt=tgt_inputs)
def _save(self, output_dir: Optional[str] = None, state_dict=None):
os.makedirs(output_dir, exist_ok=True)
if state_dict is None:
state_dict = self.model.state_dict()
prefix = 'encoder.'
assert all(k.startswith(prefix) for k in state_dict.keys()), list(state_dict.keys())
state_dict = {k[len(prefix):]: v for k, v in state_dict.items()}
self.model.encoder.save_pretrained(
output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
def split_dense_inputs(model_input: dict, chunk_size: int):
assert len(model_input) == 1
arg_key = list(model_input.keys())[0]
arg_val = model_input[arg_key]
keys = list(arg_val.keys())
chunked_tensors = [arg_val[k].split(chunk_size, dim=0) for k in keys]
chunked_arg_val = [dict(zip(kk, tt)) for kk, tt in zip(repeat(keys), zip(*chunked_tensors))]
return [{arg_key: c} for c in chunked_arg_val]
def split_vlm_inputs(model_input: dict, chunk_size: int):
assert len(model_input) == 1
arg_key = list(model_input.keys())[0]
arg_val = model_input[arg_key]
keys = list(arg_val.keys())
# for input_ids and attention_mask, split directly
chunked_tensors = [arg_val[k].split(chunk_size, dim=0) for k in ["input_ids", "attention_mask"]]
# for pixel_values and image_sizes or any other image-related fields, need to split based on the position of images
image_mask = "image_mask" if "image_mask" in keys else None
if image_mask in keys:
row_contain_image = torch.nonzero(arg_val[image_mask], as_tuple=False).squeeze() # indicates which row in input_ids contain images
if image_mask == "image_mask":
keys.remove(image_mask)
num_chunks = len(chunked_tensors[0])
chunk_image_count = []
for chunk_idx in range(num_chunks):
chunk_image_count.append(torch.sum(
(row_contain_image >= chunk_idx * chunk_size) & (row_contain_image < (chunk_idx + 1) * chunk_size)).item())
if "pixel_values" in keys:
pixel_values = arg_val["pixel_values"]
chunked_tensors.append(torch.split(pixel_values, chunk_image_count))
if "image_sizes" in keys:
image_sizes = arg_val["image_sizes"]
chunked_tensors.append(torch.split(image_sizes, chunk_image_count))
if "image_grid_thw" in keys:
image_grid_thw = arg_val["image_grid_thw"]
chunked_tensors.append(torch.split(image_grid_thw, chunk_image_count))
if "image_flags" in keys:
image_flags = arg_val["image_flags"]
chunked_tensors.append(torch.split(image_flags, chunk_size))
keys.remove("image_flags")
chunked_arg_val = []
for kk, tt in zip(repeat(keys), zip(*chunked_tensors)):
chunk_dict = {}
# 先添加基本字段
if "pixel_values" in keys and tt[2].numel() == 0: # this chunk doesn't contain image
chunk_dict.update(dict(zip(kk[:2], tt[:2])))
else:
chunk_dict.update(dict(zip(kk, tt)))
# 如果有image_flags,添加对应的chunk
if "image_flags" in arg_val:
chunk_idx = len(chunked_arg_val)
chunk_dict["image_flags"] = chunked_tensors[-1][chunk_idx]
chunked_arg_val.append(chunk_dict)
return [{arg_key: c} for c in chunked_arg_val]
def get_dense_rep(x):
"""
Get either qry_reps or tgt_reps.
"""
if x["qry_reps"] is None:
return x["tgt_reps"]
else:
return x["qry_reps"]
class GradCacheTrainer(Trainer):
"""
Adapted from gradcache repo.
"""
def __init__(self, *args, **kwargs):
super(GradCacheTrainer, self).__init__(*args, **kwargs)
self.is_ddp = dist.is_initialized()
self._dist_loss_scale_factor = dist.get_world_size() if self.is_ddp else 1
# loss_fn_cls = DistributedContrastiveLoss if self.is_ddp else SimpleContrastiveLoss
# 使用新的损失函数
loss_fn_cls = DistributedHardNegativeContrastiveLoss if self.is_ddp else HardNegativeContrastiveLoss
loss_fn = loss_fn_cls(temperature=self.model.temperature)
self.gc = GradCache(
models=[self.model, self.model],
chunk_sizes=[self.args.gc_q_chunk_size, self.args.gc_p_chunk_size],
loss_fn=loss_fn,
split_input_fn=split_vlm_inputs,
get_rep_fn=get_dense_rep,
fp16=self.args.fp16,
scaler=self.scaler if self.args.fp16 else None
)
def training_step(self, model, inputs, *args, **kwargs) -> torch.Tensor:
model.train()
if self.args.hard_neg:
queries, passages, negatives = inputs
queries, passages, negatives = {'qry': queries}, {'tgt': passages}, {'neg': negatives}
if self.args.local_rank == 0:
print(f"qry.shape={queries['qry']['input_ids'].shape}")
print(f"tgt.shape={passages['tgt']['input_ids'].shape}")
print(f"neg.shape={negatives['neg']['input_ids'].shape}")
if 'pixel_values' in queries['qry']:
print(f"qry_img.shape={queries['qry']['pixel_values'].shape}")
if 'pixel_values' in passages['tgt']:
print(f"tgt_img.shape={passages['tgt']['pixel_values'].shape}")
if 'pixel_values' in negatives['neg']:
print(f"neg_img.shape={negatives['neg']['pixel_values'].shape}")
_distributed = self.args.local_rank > -1
self.gc.models = [model, model, model]
loss = self.gc(queries, passages, negatives, no_sync_except_last=_distributed)
else:
queries, passages = inputs
queries, passages = {'qry': queries}, {'tgt': passages}
if self.args.local_rank == 0:
print(f"qry.shape={queries['qry']['input_ids'].shape}")
print(f"tgt.shape={passages['tgt']['input_ids'].shape}")
if 'pixel_values' in queries['qry']:
print(f"qry_img.shape={queries['qry']['pixel_values'].shape}")
if 'pixel_values' in passages['tgt']:
print(f"tgt_img.shape={passages['tgt']['pixel_values'].shape}")
_distributed = self.args.local_rank > -1
self.gc.models = [model, model]
loss = self.gc(queries, passages, no_sync_except_last=_distributed)
return loss / self._dist_loss_scale_factor
def _save(self, output_dir: Optional[str] = None, state_dict=None):
print(f"Saving model to {output_dir}")
os.makedirs(output_dir, exist_ok=True)
if state_dict is None:
state_dict = self.model.state_dict()
prefix = 'encoder.'
assert all(k.startswith(prefix) for k in state_dict.keys()), list(state_dict.keys())
state_dict = {k[len(prefix):]: v for k, v in state_dict.items()}
self.model.encoder.save_pretrained(
output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
self.model.encoder.config.to_json_file(os.path.join(output_dir, 'config.json'))
|