File size: 11,813 Bytes
a72a7d4
 
 
 
 
 
 
 
 
 
 
1855cc2
a72a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1855cc2
a72a7d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import random
from typing import List, Tuple
from itertools import islice
import datasets
from datasets import load_dataset, concatenate_datasets
from torch.utils.data import Dataset
from PIL import Image
import os
from torchvision.transforms import RandAugment


def get_randaugment_transform(n=2, m=9):
    return RandAugment(num_ops=n, magnitude=m)


def add_prompt_template(data):
    data["qry"] = f"<|image_1|>{data['qry']}"
    data["pos_text"] = f"<|image_1|>{data['pos_text']}"
    data["hard_neg_text"] = f"<|image_1|>{data['hard_neg_text']}"
    return data

Phi_Image_token = "<|image_1|>"
Llava_Image_token = "<image>"
Qwen_Image_token = "<|image_pad|>"
Internvl_Image_token = "<image>"
class TrainDataset(Dataset):
    def __init__(self, data_args, model_args):
        self.data_args = data_args
        self.model_args = model_args
        self.transform = None
        if self.data_args.randaugment:
            self.transform = get_randaugment_transform()
        train_data = []

        if data_args.subset_name is not None:
            print(f"Loading {len(data_args.subset_name)} datasets: {data_args.subset_name}")
            for subset in data_args.subset_name:
                dataset_name = os.path.join(self.data_args.dataset_name, subset)
                subset_data = load_dataset(
                    dataset_name,
                    split=f"{self.data_args.dataset_split}",
                )
                train_data.append(subset_data)
            self.train_data = concatenate_datasets(train_data)
            self.train_data = self.train_data.shuffle(seed=42)
        else:
            train_data = load_dataset(
                self.data_args.dataset_name,
                split=f"{self.data_args.dataset_split}",
            )
            if "hard_neg" in self.data_args.dataset_name:
                # self.train_data = train_data.map(add_prompt_template, num_proc=8) 
                print(train_data)
            else:
                self.train_data = train_data 
        if self.data_args.num_samples:
            # self.train_data = self.train_data[:self.data_args.num_samples]
            self.train_data = self.train_data.select(range(self.data_args.num_samples))
        print(f"len of train_data: {len(self.train_data)}")

    def __len__(self):
        return len(self.train_data)

    def _process_image(self, image, resolution):
        if image is None:
            return None
        if resolution == "high":
            image = image.resize((1344, 1344))
        elif resolution == "low":
            image = image.resize((336, 336))
        elif resolution == "clip":
            image = image.resize((224, 224))

        return image

    def _get_image(self, img_path):
        if img_path == "":
            return None
        if img_path.startswith('/'):
            full_img_path = img_path
        else:
            full_img_path = os.path.join(self.data_args.image_dir, img_path)
        image = Image.open(full_img_path)
        if self.model_args.model_backbone == "llava_next":
            # TODO: make it configurable
            return self._process_image(image, "high")
        elif self.model_args.model_backbone == "qwen":
            return self._process_image(image, "low")
        elif self.model_args.model_backbone == "internvl_2_5":
            # TODO: make it configurable
            return self._process_image(image, "high")
        else:
            return image

    def __getitem__(self, item) -> Tuple[str, List[str]]:
        
        data_item = self.train_data[item]
        qry_text, qry_image_path, pos_text, pos_image_path = (
            data_item["qry"], data_item["qry_image_path"],
            data_item["pos_text"], data_item["pos_image_path"],
        )
        
        qry_image = self._get_image(qry_image_path)
        if self.transform:
            qry_image = self.transform(qry_image)
        
        if self.model_args.model_backbone == "llava_next":
            # Update image token
            qry_text = qry_text.replace(Phi_Image_token, Llava_Image_token)
            pos_text = pos_text.replace(Phi_Image_token, Llava_Image_token)
        elif self.model_args.model_backbone == "qwen":
            qry_text = qry_text.replace(Phi_Image_token, Qwen_Image_token)
            pos_text = pos_text.replace(Phi_Image_token, Qwen_Image_token)
        elif self.model_args.model_backbone == "internvl_2_5":
            qry_text = qry_text.replace(Phi_Image_token, Internvl_Image_token)
            pos_text = pos_text.replace(Phi_Image_token, Internvl_Image_token)

        if "hard_neg" in self.data_args.dataset_name:
            hard_neg_text, hard_neg_image_path = (
                data_item["hard_neg_text"], data_item["hard_neg_image_path"],
            )
            if self.model_args.model_backbone == "llava_next":
                # Update image token
                hard_neg_text = hard_neg_text.replace(Phi_Image_token, Llava_Image_token)
            elif self.model_args.model_backbone == "internvl_2_5":
                hard_neg_text = hard_neg_text.replace(Phi_Image_token, Internvl_Image_token)
            return (
                qry_text, qry_image,
                pos_text, self._get_image(pos_image_path),
                hard_neg_text, self._get_image(hard_neg_image_path)
            )
        
        return (
            qry_text, qry_image,
            pos_text, self._get_image(pos_image_path)
        )
        




class EvalDataset(Dataset):
    def __init__(self, data_args, model_args, subset, text_field, img_path_field):
        """
        (text_field, image_field) -> ("qry_text", "qry_img_path") or ("tgt_text", "tgt_img_path")
        """
        self.data_args = data_args
        self.model_args = model_args

        if data_args.subset_name is not None:   
            self.eval_data = load_dataset(
                self.data_args.dataset_name,
                subset,
                split=self.data_args.dataset_split,
            )
        else:
            self.eval_data = load_dataset(
                self.data_args.dataset_name,
                split=self.data_args.dataset_split,
            )
        print(f"len of eval_data: {len(self.eval_data)}")
        self.paired_data = self.get_paired_data(text_field, img_path_field)
        self.paired_dataset = datasets.Dataset.from_dict({
            "text": [pair["text"] for pair in self.paired_data],
            "img_path": [pair["img_path"] for pair in self.paired_data]
        })

    def __len__(self):
        return len(self.paired_dataset)

    def __getitem__(self, item):
        text, img_path = self.paired_dataset[item]["text"], self.paired_dataset[item]["img_path"]
        if self.model_args.model_backbone == "llava_next":
            # Update llava image token
            text = text.replace(Phi_Image_token, Llava_Image_token)
        elif self.model_args.model_backbone == "qwen":
            text = text.replace(Phi_Image_token, Qwen_Image_token)
        elif self.model_args.model_backbone == "internvl_2_5":
            text = text.replace(Phi_Image_token, Internvl_Image_token)

        return text, self._get_image(img_path),

    def _process_image(self, image, resolution):
        if image is None:
            return None
        if resolution == "high":
            image = image.resize((1344, 1344))
        else:
            image = image.resize((336, 336))
        return image

    def _get_image(self, img_path):
        if img_path == "":
            return None
        if img_path.startswith("/"):
            full_img_path = img_path
        else:
            full_img_path = os.path.join(self.data_args.image_dir, img_path)
        image = Image.open(full_img_path)
        if self.model_args.model_backbone == "llava_next":
            return self._process_image(image, "high")
        elif self.model_args.model_backbone == "internvl_2_5":
            return self._process_image(image, "high")
        else:
            return image
        return image

    def get_paired_data(self, text_field, img_path_field):
        """
        (text_field, image_field) -> ("qry_text", "qry_img_path") or ("tgt_text", "tgt_img_path")
        """
        unique_pair = set()
        for row in self.eval_data:
            if isinstance(row[text_field], str):
                if row[text_field]:
                    unique_pair.add((row[text_field], row[img_path_field]))
                else:
                    if isinstance(row[img_path_field], List):
                        for img_path in row[img_path_field]:
                            unique_pair.add((row[text_field], img_path))
                    else:
                        unique_pair.add((row[text_field], row[img_path_field]))
            elif isinstance(row[text_field], List):
                assert isinstance(row[img_path_field], List) and len(row[img_path_field]) == len(row[text_field])
                for text, img_path in zip(row[text_field], row[img_path_field]):
                    unique_pair.add((text, img_path))

        paired_data = [{"text": text, "img_path": img_path} for text, img_path in unique_pair]
        return paired_data


class FlickrDataset(Dataset):
    def __init__(self, modality, model_backbone):
        self.model_backbone = model_backbone
        self.modality = modality
        self.raw_data = load_dataset("nlphuji/flickr_1k_test_image_text_retrieval", split="test")
        if modality == "image":
            self.eval_data, self.image_names = self.get_image_data()
        else:
            self.eval_data, self.image_names = self.get_text_data()

    def __len__(self):
        return len(self.eval_data)

    def __getitem__(self, idx):
        return self.eval_data[idx]

    def __getitem__(self, idx):
        text, image = self.eval_data[idx]
        if self.model_backbone == "llava_next":
            # Update llava image token
            text = text.replace(Phi_Image_token, Llava_Image_token)
            image = self._process_image(image, "high")
        return text, image

    def _process_image(self, image, resolution):
        if image is None:
            return None
        if resolution == "high":
            image = image.resize((1344, 1344))
        else:
            image = image.resize((336, 336))
        return image

    def _get_image(self, img_path):
        if img_path == "":
            return None
        full_img_path = os.path.join(self.data_args.image_dir, img_path)
        image = Image.open(full_img_path)
        if self.model_backbone == "llava_next":
            return self._process_image(image, "high")
        else:
            return image
        return image

    def get_image_data(self):
        eval_data, image_names = [], []
        # i2t
        inst = "<|image_1|> Find an image caption describing the given image."  # llava-1344-step1k4, i2t=94.0, t2i=80.26
        # inst = "<|image_1|> Represent the given image for image caption retrieval."  # llava-1344-step1k4, i2t=94.6, t2i=78.98
        # t2i
        # inst = "<|image_1|> Represent the given image."  # MSCOCO t2i

        for row in self.raw_data:
            eval_data.append((inst, row["image"]))
            image_names.append(row["filename"])
        return eval_data, image_names

    def get_text_data(self):
        eval_data, image_names = [], []
        # i2t
        inst = ""
        # t2i
        # inst = "Retrieve an image that matches the given caption: "
        # inst = "Find me an everyday image that matches the given caption."  # MSCOCO t2i
        for row in self.raw_data:
            for caption in row["caption"]:
                # eval_data.append((caption, None))
                eval_data.append((inst + caption, None))
                image_names.append(row["filename"])
        return eval_data, image_names