Spaces:
Sleeping
Sleeping
Commit
·
7f8d6ba
1
Parent(s):
ca7444f
fix2
Browse files- mpl_data_plotter.py +10 -12
mpl_data_plotter.py
CHANGED
@@ -19,15 +19,13 @@ class MatplotlibDataPlotter:
|
|
19 |
|
20 |
def plot_single_domains(self, num_domains, split_name):
|
21 |
|
22 |
-
#
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
'cds_region_id'].values
|
27 |
-
single_df_subset = self.single_df.loc[self.single_df.cds_region_id.isin(selected_region_ids)]
|
28 |
|
29 |
return self.single_domains_fig
|
30 |
-
split_name = 'stratified'
|
31 |
column_name = f'cosine_similarity_{split_name}'
|
32 |
# single_df_subset = single_df.loc[single_df.dom_location_len >= num_domains]
|
33 |
selected_keyword_index = single_df_subset.groupby('cds_region_id').agg(
|
@@ -66,12 +64,12 @@ class MatplotlibDataPlotter:
|
|
66 |
return fig # plt.gcf()
|
67 |
|
68 |
def plot_pair_domains(self, num_domains, split_name):
|
69 |
-
selected_region_ids = self.num_domains_in_region_df.loc[
|
70 |
-
|
71 |
-
|
72 |
-
pair_df_subset = self.pair_df.loc[self.pair_df.cds_region_id.isin(selected_region_ids)]
|
73 |
return self.pair_domains_fig
|
74 |
-
split_name = 'stratified'
|
75 |
column_name = f'cosine_similarity_{split_name}'
|
76 |
# pair_df_subset = pair_df.loc[pair_df.dom_location_len >= num_domains]
|
77 |
selected_keyword_index = pair_df_subset.groupby('cds_region_id').agg(
|
|
|
19 |
|
20 |
def plot_single_domains(self, num_domains, split_name):
|
21 |
|
22 |
+
# selected_region_ids = self.num_domains_in_region_df.loc[
|
23 |
+
# self.num_domains_in_region_df.num_domains >= num_domains,
|
24 |
+
# 'cds_region_id'].values
|
25 |
+
# single_df_subset = self.single_df.loc[self.single_df.cds_region_id.isin(selected_region_ids)]
|
|
|
|
|
26 |
|
27 |
return self.single_domains_fig
|
28 |
+
# split_name = 'stratified'
|
29 |
column_name = f'cosine_similarity_{split_name}'
|
30 |
# single_df_subset = single_df.loc[single_df.dom_location_len >= num_domains]
|
31 |
selected_keyword_index = single_df_subset.groupby('cds_region_id').agg(
|
|
|
64 |
return fig # plt.gcf()
|
65 |
|
66 |
def plot_pair_domains(self, num_domains, split_name):
|
67 |
+
# selected_region_ids = self.num_domains_in_region_df.loc[
|
68 |
+
# self.num_domains_in_region_df.num_domains >= num_domains,
|
69 |
+
# 'cds_region_id'].values
|
70 |
+
# pair_df_subset = self.pair_df.loc[self.pair_df.cds_region_id.isin(selected_region_ids)]
|
71 |
return self.pair_domains_fig
|
72 |
+
# split_name = 'stratified'
|
73 |
column_name = f'cosine_similarity_{split_name}'
|
74 |
# pair_df_subset = pair_df.loc[pair_df.dom_location_len >= num_domains]
|
75 |
selected_keyword_index = pair_df_subset.groupby('cds_region_id').agg(
|