latticetower's picture
fix avxline in plots, use common legend in gradio, add reaction and loading on launch
b40aac1
raw
history blame
4.72 kB
import gradio as gr
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from constants import *
from mpl_data_plotter import MatplotlibDataPlotter
def convert_int64_to_int32(df):
for col in df.columns:
if df[col].dtype == 'int64':
print(col)
df[col] = df[col].astype('int32')
return df
print(f"Loading domains data...")
single_df = pd.read_csv(SINGLE_DOMAINS_FILE, compression='gzip')
single_df.rename(columns={'bgc_class': 'biosyn_class'}, inplace=True)
single_df['biosyn_class_index'] = single_df.biosyn_class.apply(lambda x: BIOSYN_CLASS_NAMES.index(x))
single_df = convert_int64_to_int32(single_df)
pair_df = pd.read_csv(PAIR_DOMAINS_FILE, compression='gzip')
pair_df.rename(columns={'bgc_class': 'biosyn_class'}, inplace=True)
pair_df['biosyn_class_index'] = pair_df.biosyn_class.apply(lambda x: BIOSYN_CLASS_NAMES.index(x))
pair_df = convert_int64_to_int32(pair_df)
num_domains_in_region_df = single_df.groupby('cds_region_id', as_index=False).agg({'as_domain_id': 'count'}).rename(
columns={'as_domain_id': 'num_domains'})
unique_domain_lengths = num_domains_in_region_df.num_domains.unique()
print(f"Initializing data plotter...")
data_plotter = MatplotlibDataPlotter(single_df, pair_df, num_domains_in_region_df)
def create_color_legend(class_to_color):
# Create HTML for the color legend
legend_html = """
<div style="
margin: 10px 0;
padding: 10px;
border: 1px solid #ddd;
border-radius: 4px;
background: white;
">
<div style="
font-weight: bold;
margin-bottom: 8px;
">Color Legend:</div>
<div style="
display: flex;
flex-wrap: wrap;
gap: 15px;
align-items: center;
">
"""
# Add each class and its color
for class_name, color in class_to_color.items():
legend_html += f"""
<div style="
display: flex;
align-items: center;
gap: 5px;
">
<div style="
width: 20px;
height: 20px;
background-color: {color};
border-radius: 3px;
"></div>
<span>{class_name}</span>
</div>
"""
legend_html += """
</div>
</div>
"""
return gr.HTML(legend_html)
def update_all_plots(frequency, split_name):
return data_plotter.plot_single_domains(frequency, split_name), data_plotter.plot_pair_domains(frequency, split_name)
print(f"Defining blocks...")
# Create Gradio interface
with gr.Blocks(title="BGC Keyword Plotter") as demo:
gr.Markdown("## BGC Keyword Plotter")
gr.Markdown("Select the model name and minimal number of domains in Antismash-db subset.")
color_legend = create_color_legend(BIOSYN_CLASS_HEX_COLORS)
with gr.Row():
frequency_slider = gr.Slider(
minimum=int(unique_domain_lengths.min()),
maximum=int(unique_domain_lengths.max()),
step=1,
value=int(unique_domain_lengths.min()),
label="Min number of domains"
)
model_selector = gr.Radio(
choices=["stratified"] + BIOSYN_CLASS_NAMES,
value="stratified",
label="Model name"
)
with gr.Row():
with gr.Column():
single_domains_plot = gr.Plot(
label="Single domains",
container=True,
elem_id="single_domains_plot"
)
# gr.HTML("""
# <style>
# #single_domains_plot {
# height: 100% !important;
# width: 100% !important;
# }
# </style>
# """)
with gr.Column():
pair_domains_plot = gr.Plot(label="Pair domains")
# with gr.Column():
# combined_plot = gr.Plot(label="Combined Wave")
frequency_slider.release(
fn=update_all_plots,
inputs=[frequency_slider, model_selector],
outputs=[single_domains_plot, pair_domains_plot]#, cosine_plot]
)
demo.load(
fn=update_all_plots,
inputs=[frequency_slider, model_selector],
outputs=[single_domains_plot, pair_domains_plot]
)
model_selector.input(
fn=update_all_plots,
inputs=[frequency_slider, model_selector],
outputs=[single_domains_plot, pair_domains_plot]
)
print(f"Launching!...")
demo.launch()
# demo.load(filter_map, [min_price, max_price, boroughs], map)