File size: 8,295 Bytes
f75ccae
 
 
 
 
 
 
 
 
 
 
 
e27df4e
 
 
 
f75ccae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27df4e
 
 
 
 
 
 
 
f75ccae
 
 
a880965
f75ccae
 
 
 
 
 
 
 
 
 
e27df4e
f75ccae
 
 
 
 
e27df4e
f75ccae
 
 
 
 
 
 
e27df4e
f75ccae
 
 
 
e27df4e
 
 
f75ccae
 
 
 
 
 
e27df4e
 
f75ccae
e27df4e
f75ccae
d51834f
a880965
 
 
d51834f
 
a880965
 
 
 
 
e27df4e
d51834f
e27df4e
a880965
 
e27df4e
 
 
 
 
 
a880965
e27df4e
 
f75ccae
e27df4e
f75ccae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27df4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f75ccae
 
 
 
e27df4e
f75ccae
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import logging
import os
import requests
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from openai import OpenAI
from huggingface_hub import snapshot_download, InferenceClient

from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings


logging.basicConfig(level=logging.INFO, format='[%(asctime)s][%(levelname)s] - %(message)s')
# logging.getLogger().setLevel(logging.INFO)


class RAG:
    NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta."

    #vectorstore = "index-intfloat_multilingual-e5-small-500-100-CA-ES" # mixed
    #vectorstore = "vectorestore" # CA only
    #vectorstore = "index-BAAI_bge-m3-1500-200-recursive_splitter-CA_ES_UE"

    def __init__(self, vs_hf_repo_path, vectorstore_path, hf_token, embeddings_model, model_name, rerank_model, rerank_number_contexts):
        self.vs_hf_repo_path = vs_hf_repo_path
        self.vectorstore_path=vectorstore_path
        self.model_name = model_name
        self.hf_token = hf_token
        self.rerank_model = rerank_model
        self.rerank_number_contexts = rerank_number_contexts
        
        # load vectore store
        embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})

        if vs_hf_repo_path:
            hf_vectorstore = snapshot_download(repo_id=vs_hf_repo_path)
            self.vectore_store = FAISS.load_local(hf_vectorstore, embeddings, allow_dangerous_deserialization=True)
        else:
            self.vectore_store = FAISS.load_local(self.vectorstore_path, embeddings, allow_dangerous_deserialization=True)


        logging.info("RAG loaded!")
        logging.info( self.vectore_store)
   
    
    def rerank_contexts(self, instruction, contexts, number_of_contexts=1):
        """
        Rerank the contexts based on their relevance to the given instruction.
        """

        rerank_model = self.rerank_model
        

        tokenizer = AutoTokenizer.from_pretrained(rerank_model)
        model = AutoModelForSequenceClassification.from_pretrained(rerank_model)
        logging.info("Rerank model loaded!")

        def get_score(query, passage):
            """Calculate the relevance score of a passage with respect to a query."""

            inputs = tokenizer(query, passage, return_tensors='pt', truncation=True, padding=True, max_length=512)
            print("Inputs: ", inputs)

            with torch.no_grad():
                outputs = model(**inputs)
            
            logits = outputs.logits
            score = logits.view(-1, ).float()  
            
            print("Score: ", score)

            return score

        scores = [get_score(instruction, c[0].page_content) for c in contexts]

        print("Scores: ", scores)

        combined = list(zip(contexts, scores))
        sorted_combined = sorted(combined, key=lambda x: x[1], reverse=True)
        sorted_texts, _ = zip(*sorted_combined)

        return sorted_texts[:number_of_contexts]

    
    def get_context(self, instruction, number_of_contexts=3):
        """Retrieve the most relevant contexts for a given instruction."""
        
        logging.info("RETRIEVE DOCUMENTS")
        logging.info(f"Instruction: {instruction}")
        
        # Embed the query
        # ==============================================================================================================
        embedding = self.vectore_store._embed_query(instruction)
        logging.info(f"Query embedding generated: {len(embedding)}")
        

        # Retrieve documents
        # ==============================================================================================================
        documents_retrieved = self.vectore_store.similarity_search_with_score_by_vector(embedding, k=number_of_contexts)
        logging.info(f"Documents retrieved: {len(documents_retrieved)}")


        # Reranking
        # ==============================================================================================================
        if self.rerank_model:
            logging.info("RERANK DOCUMENTS")
            documents_reranked = self.rerank_contexts(instruction, documents_retrieved, number_of_contexts=number_of_contexts)
        else:
            logging.info("NO RERANKING")
            documents_reranked = documents_retrieved[:number_of_contexts]
        # ==============================================================================================================

        return documents_reranked
        
    
    def predict_dolly(self, instruction, context, model_parameters):

        api_key = os.getenv("HF_TOKEN")


        headers = {
        "Accept" : "application/json",
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json" 
        }

        query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n "
        #prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>"


        payload = {
        "inputs": query,
        "parameters": model_parameters
        }
        
        response = requests.post(self.model_name, headers=headers, json=payload)

        return response.json()[0]["generated_text"].split("###")[-1][8:]

    def predict_completion(self, instruction, context, model_parameters):
        
        client = OpenAI(
                base_url=os.getenv("MODEL"),
                api_key=os.getenv("HF_TOKEN")
            )

        query = f"Context:\n{context}\n\nQuestion:\n{instruction}"

        chat_completion = client.chat.completions.create(
            model="tgi",
            messages=[
                {"role": "user", "content": query}
            ],
            temperature=model_parameters["temperature"],
            max_tokens=model_parameters["max_new_tokens"],
            stream=False,
            stop=["<|im_end|>"],
            extra_body = {
                "presence_penalty": model_parameters["repetition_penalty"] - 2,
                "do_sample": False
            }
        )

        response = chat_completion.choices[0].message.content

        return response
        
    
    def beautiful_context(self, docs):
        
        text_context = ""

        full_context = ""
        source_context = []
        for doc in docs:
            # print("="*100)
            # logging.info(doc)
            text_context += doc[0].page_content
            full_context += doc[0].page_content + "\n"
            full_context += doc[0].metadata["title"] + "\n\n"
            full_context += doc[0].metadata["url"] + "\n\n"
            source_context.append(doc[0].metadata["url"])

        return text_context, full_context, source_context

    def get_response(self, prompt: str, model_parameters: dict) -> str:
        try:
            docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])

            response = ""

            for i, (doc, score) in enumerate(docs):
                
                response += "\n\n" + "="*100
                response += f"\nDocument {i+1}"
                response += "\n" + "="*100
                response += f"\nScore: {score:.5f}"
                response += f"\nTitle: {doc.metadata['title']}"
                response += f"\nURL: {doc.metadata['url']}"
                response += f"\nID: {doc.metadata['id']}"
                response += f"\nStart index: {doc.metadata['start_index']}"
                # response += f"\nSource: {doc.metadata['src']}"
                # response += f"\nRedirected: {doc.metadata['redirected']}"
                # url = doc.metadata['url']
                # response += f"\nRevision ID: {url}"
                # response += f'\nURL: <a href="{url}" target="_blank">{url}</a><br>'
                response += "\n" + "-"*100 + "\n"
                response += f"\nContent:\n"
                response += doc.page_content

            full_context = ""
            source = []
            
            if not response:
                return self.NO_ANSWER_MESSAGE

            return response, full_context, source
        
        except Exception as err:
            print(err)