MLhouse-RAG / rag.py
MarinaPlius's picture
wiki urls
32055a8 verified
raw
history blame contribute delete
5.67 kB
import logging
import os
import requests
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
from openai import OpenAI
from huggingface_hub import snapshot_download
from langchain_community.vectorstores import FAISS
from langchain_community.embeddings import HuggingFaceEmbeddings
class RAG:
NO_ANSWER_MESSAGE: str = "Ho sento, no he pogut respondre la teva pregunta."
# Download the vectorstore from Hugging Face Hub
def __init__(self, hf_token, embeddings_model, repo_name,model_name):
vectorstore = snapshot_download(repo_name)
self.model_name = model_name
self.hf_token = hf_token
# self.rerank_model = rerank_model
# self.rerank_number_contexts = rerank_number_contexts
# load vectore store
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model, model_kwargs={'device': 'cpu'})
self.vectore_store = FAISS.load_local(vectorstore, embeddings, allow_dangerous_deserialization=True)#, allow_dangerous_deserialization=True)
logging.info("RAG loaded!")
# def rerank_contexts(self, instruction, contexts, number_of_contexts=1):
# """
# Rerank the contexts based on their relevance to the given instruction.
# """
# rerank_model = self.rerank_model
# tokenizer = AutoTokenizer.from_pretrained(rerank_model)
# model = AutoModelForSequenceClassification.from_pretrained(rerank_model)
# def get_score(query, passage):
# """Calculate the relevance score of a passage with respect to a query."""
# inputs = tokenizer(query, passage, return_tensors='pt', truncation=True, padding=True, max_length=512)
# with torch.no_grad():
# outputs = model(**inputs)
# logits = outputs.logits
# score = logits.view(-1, ).float()
# return score
# scores = [get_score(instruction, c[0].page_content) for c in contexts]
# combined = list(zip(contexts, scores))
# sorted_combined = sorted(combined, key=lambda x: x[1], reverse=True)
# sorted_texts, _ = zip(*sorted_combined)
# return sorted_texts[:number_of_contexts]
def get_context(self, instruction, number_of_contexts=2):
"""Retrieve the most relevant contexts for a given instruction."""
documentos = self.vectore_store.similarity_search_with_score(instruction, k=4)
# documentos = self.rerank_contexts(instruction, documentos, number_of_contexts=number_of_contexts)
print("Reranked documents")
return documentos
def predict_dolly(self, instruction, context, model_parameters):
api_key = os.getenv("HF_TOKEN")
headers = {
"Accept" : "application/json",
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
query = f"### Instruction\n{instruction}\n\n### Context\n{context}\n\n### Answer\n "
#prompt = "You are a helpful assistant. Answer the question using only the context you are provided with. If it is not possible to do it with the context, just say 'I can't answer'. <|endoftext|>"
payload = {
"inputs": query,
"parameters": model_parameters
}
response = requests.post(self.model_name, headers=headers, json=payload)
return response.json()[0]["generated_text"].split("###")[-1][8:]
def predict_completion(self, instruction, context, model_parameters):
client = OpenAI(
base_url=os.getenv("MODEL"),
api_key=os.getenv("HF_TOKEN")
)
query = f"Context:\n{context}\n\nQuestion:\n{instruction}"
chat_completion = client.chat.completions.create(
model="tgi",
messages=[
{"role": "user", "content": instruction}
],
temperature=model_parameters["temperature"],
max_tokens=model_parameters["max_new_tokens"],
stream=False,
stop=["<|im_end|>"],
extra_body = {
"presence_penalty": model_parameters["repetition_penalty"] - 2,
"do_sample": False
}
)
response = chat_completion.choices[0].message.content
return response
def get_wiki_url(self, title):
base_url = "https://ca.wikipedia.org/wiki/"
formatted_title = title.replace(" ", "_")
return base_url + formatted_title
def beautiful_context(self, docs):
text_context = ""
full_context = ""
source_context = []
for doc in docs:
text_context += doc[0].page_content
full_context += doc[0].page_content + "\n"
full_context += doc[0].metadata["url"] + "\n\n"
source_context.append(self.get_wiki_url(doc[0].metadata["title"]))
return text_context, full_context, source_context
def get_response(self, prompt: str, model_parameters: dict) -> str:
try:
docs = self.get_context(prompt, model_parameters["NUM_CHUNKS"])
text_context, full_context, source = self.beautiful_context(docs)
del model_parameters["NUM_CHUNKS"]
response = self.predict_completion(prompt, text_context, model_parameters)
#response = "Output"
if not response:
return self.NO_ANSWER_MESSAGE
return response, full_context, source
except Exception as err:
print(err)