Update app.py
Browse files
app.py
CHANGED
@@ -1,99 +1,100 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
3 |
-
import speech_recognition as sr
|
4 |
-
from gtts import gTTS
|
5 |
-
from pydub import AudioSegment
|
6 |
-
import os
|
7 |
-
import tempfile
|
8 |
-
|
9 |
-
# Load Translation Model
|
10 |
-
@st.cache_resource
|
11 |
-
def load_m2m_model():
|
12 |
-
model_name = "facebook/m2m100_418M"
|
13 |
-
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
14 |
-
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
15 |
-
return model, tokenizer
|
16 |
-
|
17 |
-
model, tokenizer = load_m2m_model()
|
18 |
-
|
19 |
-
# Language Mapping
|
20 |
-
language_codes = {
|
21 |
-
"English": "en",
|
22 |
-
"Hindi": "hi",
|
23 |
-
"Marathi": "mr",
|
24 |
-
"Chinese": "zh",
|
25 |
-
"Japanese": "ja",
|
26 |
-
"Spanish": "es",
|
27 |
-
"Korean": "ko"
|
28 |
-
}
|
29 |
-
|
30 |
-
# Streamlit App
|
31 |
-
st.markdown("<h1 style='text-align: center;'>π PolyglotPal π</h1>", unsafe_allow_html=True)
|
32 |
-
st.markdown("<h5 style='text-align: center;'>Your friendly multilingual assistant</h5>", unsafe_allow_html=True)
|
33 |
-
st.sidebar.header("Language Translation Options")
|
34 |
-
|
35 |
-
# Input Language
|
36 |
-
input_language = st.sidebar.selectbox("Select Input Language", list(language_codes.keys()))
|
37 |
-
|
38 |
-
# Target Language
|
39 |
-
target_language = st.sidebar.selectbox(
|
40 |
-
"Select Target Language",
|
41 |
-
[lang for lang in language_codes.keys() if lang != input_language]
|
42 |
-
)
|
43 |
-
|
44 |
-
# Input Method
|
45 |
-
input_method = st.radio("Select Input Method", ["Text Input", "Speech Input"])
|
46 |
-
|
47 |
-
if input_method == "Speech Input":
|
48 |
-
st.subheader("Upload Audio File for Translation")
|
49 |
-
audio_file = st.file_uploader("Upload an MP3 file", type=["mp3"])
|
50 |
-
|
51 |
-
# Text Input or Speech-to-Text
|
52 |
-
input_text = ""
|
53 |
-
if input_method == "Text Input":
|
54 |
-
st.subheader(f"Input Text ({input_language})")
|
55 |
-
input_text = st.text_area("Enter text to translate:", height=150)
|
56 |
-
elif input_method == "Speech Input" and audio_file:
|
57 |
-
# Process MP3 to WAV
|
58 |
-
try:
|
59 |
-
# Convert MP3 to WAV using pydub
|
60 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav_file:
|
61 |
-
audio = AudioSegment.from_file(audio_file, format="mp3")
|
62 |
-
audio.export(tmp_wav_file.name, format="wav")
|
63 |
-
|
64 |
-
# Perform Speech-to-Text
|
65 |
-
recognizer = sr.Recognizer()
|
66 |
-
with sr.AudioFile(tmp_wav_file.name) as source:
|
67 |
-
audio_data = recognizer.record(source)
|
68 |
-
input_text = recognizer.recognize_google(audio_data, language=language_codes[input_language])
|
69 |
-
st.success(f"Recognized Speech: {input_text}")
|
70 |
-
except Exception as e:
|
71 |
-
st.error(f"Error processing audio: {e}")
|
72 |
-
|
73 |
-
if st.button("Translate"):
|
74 |
-
if input_text.strip():
|
75 |
-
try:
|
76 |
-
# Set source and target languages
|
77 |
-
tokenizer.src_lang = language_codes[input_language]
|
78 |
-
encoded_input = tokenizer(input_text, return_tensors="pt")
|
79 |
-
|
80 |
-
# Generate translation
|
81 |
-
generated_tokens = model.generate(
|
82 |
-
**encoded_input,
|
83 |
-
forced_bos_token_id=tokenizer.lang_code_to_id[language_codes[target_language]]
|
84 |
-
)
|
85 |
-
translated_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
86 |
-
|
87 |
-
# Display Translation
|
88 |
-
st.subheader(f"Translated Text ({target_language})")
|
89 |
-
st.text_area("Translation Result:", value=translated_text, height=150, disabled=True)
|
90 |
-
|
91 |
-
# Text-to-Speech
|
92 |
-
st.subheader("Text-to-Speech Output")
|
93 |
-
tts = gTTS(translated_text, lang=language_codes[target_language])
|
94 |
-
tts.save("translated_audio.mp3")
|
95 |
-
st.audio("translated_audio.mp3", format="audio/mp3")
|
96 |
-
except
|
97 |
-
st.error(f"Translation error: {e}")
|
98 |
-
|
99 |
-
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
|
3 |
+
import speech_recognition as sr
|
4 |
+
from gtts import gTTS
|
5 |
+
from pydub import AudioSegment
|
6 |
+
import os
|
7 |
+
import tempfile
|
8 |
+
|
9 |
+
# Load Translation Model
|
10 |
+
@st.cache_resource
|
11 |
+
def load_m2m_model():
|
12 |
+
model_name = "facebook/m2m100_418M"
|
13 |
+
model = M2M100ForConditionalGeneration.from_pretrained(model_name)
|
14 |
+
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
|
15 |
+
return model, tokenizer
|
16 |
+
|
17 |
+
model, tokenizer = load_m2m_model()
|
18 |
+
|
19 |
+
# Language Mapping
|
20 |
+
language_codes = {
|
21 |
+
"English": "en",
|
22 |
+
"Hindi": "hi",
|
23 |
+
"Marathi": "mr",
|
24 |
+
"Chinese": "zh",
|
25 |
+
"Japanese": "ja",
|
26 |
+
"Spanish": "es",
|
27 |
+
"Korean": "ko"
|
28 |
+
}
|
29 |
+
|
30 |
+
# Streamlit App
|
31 |
+
st.markdown("<h1 style='text-align: center;'>π PolyglotPal π</h1>", unsafe_allow_html=True)
|
32 |
+
st.markdown("<h5 style='text-align: center;'>Your friendly multilingual assistant</h5>", unsafe_allow_html=True)
|
33 |
+
st.sidebar.header("Language Translation Options")
|
34 |
+
|
35 |
+
# Input Language
|
36 |
+
input_language = st.sidebar.selectbox("Select Input Language", list(language_codes.keys()))
|
37 |
+
|
38 |
+
# Target Language
|
39 |
+
target_language = st.sidebar.selectbox(
|
40 |
+
"Select Target Language",
|
41 |
+
[lang for lang in language_codes.keys() if lang != input_language]
|
42 |
+
)
|
43 |
+
|
44 |
+
# Input Method
|
45 |
+
input_method = st.radio("Select Input Method", ["Text Input", "Speech Input"])
|
46 |
+
|
47 |
+
if input_method == "Speech Input":
|
48 |
+
st.subheader("Upload Audio File for Translation")
|
49 |
+
audio_file = st.file_uploader("Upload an MP3 file", type=["mp3"])
|
50 |
+
|
51 |
+
# Text Input or Speech-to-Text
|
52 |
+
input_text = ""
|
53 |
+
if input_method == "Text Input":
|
54 |
+
st.subheader(f"Input Text ({input_language})")
|
55 |
+
input_text = st.text_area("Enter text to translate:", height=150)
|
56 |
+
elif input_method == "Speech Input" and audio_file:
|
57 |
+
# Process MP3 to WAV
|
58 |
+
try:
|
59 |
+
# Convert MP3 to WAV using pydub
|
60 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as tmp_wav_file:
|
61 |
+
audio = AudioSegment.from_file(audio_file, format="mp3")
|
62 |
+
audio.export(tmp_wav_file.name, format="wav")
|
63 |
+
|
64 |
+
# Perform Speech-to-Text
|
65 |
+
recognizer = sr.Recognizer()
|
66 |
+
with sr.AudioFile(tmp_wav_file.name) as source:
|
67 |
+
audio_data = recognizer.record(source)
|
68 |
+
input_text = recognizer.recognize_google(audio_data, language=language_codes[input_language])
|
69 |
+
st.success(f"Recognized Speech: {input_text}")
|
70 |
+
except Exception as e:
|
71 |
+
st.error(f"Error processing audio: {e}")
|
72 |
+
|
73 |
+
if st.button("Translate"):
|
74 |
+
if input_text.strip():
|
75 |
+
try:
|
76 |
+
# Set source and target languages
|
77 |
+
tokenizer.src_lang = language_codes[input_language]
|
78 |
+
encoded_input = tokenizer(input_text, return_tensors="pt")
|
79 |
+
|
80 |
+
# Generate translation
|
81 |
+
generated_tokens = model.generate(
|
82 |
+
**encoded_input,
|
83 |
+
forced_bos_token_id=tokenizer.lang_code_to_id[language_codes[target_language]]
|
84 |
+
)
|
85 |
+
translated_text = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
|
86 |
+
|
87 |
+
# Display Translation
|
88 |
+
st.subheader(f"Translated Text ({target_language})")
|
89 |
+
st.text_area("Translation Result:", value=translated_text, height=150, disabled=True)
|
90 |
+
|
91 |
+
# Text-to-Speech
|
92 |
+
# st.subheader("Text-to-Speech Output")
|
93 |
+
# tts = gTTS(translated_text, lang=language_codes[target_language])
|
94 |
+
# tts.save("translated_audio.mp3")
|
95 |
+
# st.audio("translated_audio.mp3", format="audio/mp3")
|
96 |
+
except:
|
97 |
+
#st.error(f"Translation error: {e}")
|
98 |
+
pass
|
99 |
+
else:
|
100 |
+
st.error("Please provide text or speech input for translation.")
|