lalalic commited on
Commit
4f61505
·
verified ·
1 Parent(s): fe6f9ce

Update xtts.py

Browse files
Files changed (1) hide show
  1. xtts.py +10 -8
xtts.py CHANGED
@@ -1,4 +1,4 @@
1
- import re, io, os, stat
2
  import tempfile, subprocess
3
  import requests
4
  import torch
@@ -12,6 +12,8 @@ from flask import Flask, Blueprint, request, jsonify, send_file
12
  import torch
13
  import torchaudio
14
 
 
 
15
  app = Flask(__name__)
16
  # def upload_bytes(bytes, ext=".wav"):
17
  # return bytes
@@ -52,13 +54,13 @@ def predict():
52
  if tts is None:
53
  TTS=import_module("TTS.api").TTS
54
  model_name="tts_models/multilingual/multi-dataset/xtts_v2"
55
- print(f"loading model {model_name} ...")
56
  tts = TTS(model_name=model_name, progress_bar=False)
57
  model=tts.synthesizer.tts_model
58
  #hack to use cache
59
  model.__get_conditioning_latents=model.get_conditioning_latents
60
  model.get_conditioning_latents=get_conditioning_latents
61
- print("model is ready")
62
 
63
  wav = tts.tts(
64
  text,
@@ -76,7 +78,7 @@ def predict():
76
  scipy.io.wavfile.write(wav_buffer, tts.synthesizer.output_sample_rate, wav_norm)
77
  wav_bytes = wav_buffer.getvalue()
78
  url= upload_bytes(wav_bytes, ext=".wav")
79
- print(f'wav is at {url}')
80
  return url
81
  except Exception as e:
82
  traceback.print_exc()
@@ -105,14 +107,14 @@ def get_conditioning_latents(audio_path, **others):
105
  gpt_cond_latent,
106
  speaker_embedding,
107
  ) = torch.load(pt_file)
108
- print(f'sample wav info loaded from {pt_file}')
109
  except:
110
  (
111
  gpt_cond_latent,
112
  speaker_embedding,
113
  ) = model.__get_conditioning_latents(audio_path=speaker_wav, **others)
114
  torch.save((gpt_cond_latent,speaker_embedding), pt_file)
115
- print(f'sample wav info saved to {pt_file}')
116
  return gpt_cond_latent,speaker_embedding
117
 
118
  def download(url):
@@ -147,5 +149,5 @@ def trim_sample_audio(speaker_wav):
147
  return speaker_wav
148
 
149
  for key, value in os.environ.items():
150
- print(f"{key}: {value}")
151
- print("xtts is ready")
 
1
+ import re, io, os, stat, logging
2
  import tempfile, subprocess
3
  import requests
4
  import torch
 
12
  import torch
13
  import torchaudio
14
 
15
+ logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
16
+
17
  app = Flask(__name__)
18
  # def upload_bytes(bytes, ext=".wav"):
19
  # return bytes
 
54
  if tts is None:
55
  TTS=import_module("TTS.api").TTS
56
  model_name="tts_models/multilingual/multi-dataset/xtts_v2"
57
+ logging.info(f"loading model {model_name} ...")
58
  tts = TTS(model_name=model_name, progress_bar=False)
59
  model=tts.synthesizer.tts_model
60
  #hack to use cache
61
  model.__get_conditioning_latents=model.get_conditioning_latents
62
  model.get_conditioning_latents=get_conditioning_latents
63
+ logging.info("model is ready")
64
 
65
  wav = tts.tts(
66
  text,
 
78
  scipy.io.wavfile.write(wav_buffer, tts.synthesizer.output_sample_rate, wav_norm)
79
  wav_bytes = wav_buffer.getvalue()
80
  url= upload_bytes(wav_bytes, ext=".wav")
81
+ logging.debug(f'wav is at {url}')
82
  return url
83
  except Exception as e:
84
  traceback.print_exc()
 
107
  gpt_cond_latent,
108
  speaker_embedding,
109
  ) = torch.load(pt_file)
110
+ logging.debug(f'sample wav info loaded from {pt_file}')
111
  except:
112
  (
113
  gpt_cond_latent,
114
  speaker_embedding,
115
  ) = model.__get_conditioning_latents(audio_path=speaker_wav, **others)
116
  torch.save((gpt_cond_latent,speaker_embedding), pt_file)
117
+ logging.debug(f'sample wav info saved to {pt_file}')
118
  return gpt_cond_latent,speaker_embedding
119
 
120
  def download(url):
 
149
  return speaker_wav
150
 
151
  for key, value in os.environ.items():
152
+ logging.info(f"{key}: {value}")
153
+ loggin.info("xtts is ready")