Spaces:
Runtime error
Runtime error
Commit
·
5234b7a
1
Parent(s):
2665d9f
Upload app.py
Browse filesupdated the gradio inputs
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
-
import os
|
3 |
from langchain.chains import RetrievalQA
|
4 |
from langchain.llms import OpenAI
|
5 |
from langchain.document_loaders import PyPDFLoader
|
@@ -7,55 +7,48 @@ from langchain.text_splitter import CharacterTextSplitter
|
|
7 |
from langchain.embeddings import OpenAIEmbeddings
|
8 |
from langchain.vectorstores import Chroma
|
9 |
|
10 |
-
def qa_system(
|
11 |
os.environ["OPENAI_API_KEY"] = openai_key
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
documents
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
21 |
# select which embeddings we want to use
|
22 |
embeddings = OpenAIEmbeddings()
|
23 |
-
|
24 |
# create the vectorestore to use as the index
|
25 |
db = Chroma.from_documents(texts, embeddings)
|
26 |
-
|
27 |
# expose this index in a retriever interface
|
28 |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
|
29 |
-
|
30 |
-
# create a chain to answer questions
|
31 |
qa = RetrievalQA.from_chain_type(
|
32 |
llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)
|
33 |
-
|
34 |
# get the result
|
35 |
result = qa({"query": prompt})
|
36 |
-
return result['result'], ''.join(doc.page_content for doc in
|
37 |
|
38 |
# define the Gradio interface
|
39 |
-
input_file = gr.
|
40 |
-
openai_key = gr.
|
41 |
-
prompt = gr.
|
42 |
-
chain_type = gr.
|
43 |
-
k = gr.
|
44 |
|
45 |
-
output_text = gr.
|
46 |
-
output_docs = gr.
|
47 |
|
48 |
-
gr.Interface(qa_system, inputs=[input_file, openai_key, prompt, chain_type, k], outputs=[output_text, output_docs],
|
49 |
-
title="
|
50 |
description="Upload a PDF file, enter your OpenAI API key, type a question prompt, select a chain type, and choose the number of relevant chunks to use for the answer.").launch(debug = True)
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
from langchain.chains import RetrievalQA
|
4 |
from langchain.llms import OpenAI
|
5 |
from langchain.document_loaders import PyPDFLoader
|
|
|
7 |
from langchain.embeddings import OpenAIEmbeddings
|
8 |
from langchain.vectorstores import Chroma
|
9 |
|
10 |
+
def qa_system(pdf_files, openai_key, prompt, chain_type , k):
|
11 |
os.environ["OPENAI_API_KEY"] = openai_key
|
12 |
+
|
13 |
+
texts = []
|
14 |
+
|
15 |
+
# load documents from PDF files
|
16 |
+
for pdf_file in pdf_files:
|
17 |
+
loader = PyPDFLoader(pdf_file.name)
|
18 |
+
documents = loader.load()
|
19 |
+
|
20 |
+
# split the documents into chunks
|
21 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
22 |
+
texts.extend(text_splitter.split_documents(documents))
|
23 |
+
|
24 |
+
|
25 |
# select which embeddings we want to use
|
26 |
embeddings = OpenAIEmbeddings()
|
27 |
+
|
28 |
# create the vectorestore to use as the index
|
29 |
db = Chroma.from_documents(texts, embeddings)
|
30 |
+
|
31 |
# expose this index in a retriever interface
|
32 |
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
|
33 |
+
|
34 |
+
# create a chain to answer questions
|
35 |
qa = RetrievalQA.from_chain_type(
|
36 |
llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)
|
37 |
+
|
38 |
# get the result
|
39 |
result = qa({"query": prompt})
|
40 |
+
return result['result'], ''.join(doc.page_content for doc in rest["source_documents"])
|
41 |
|
42 |
# define the Gradio interface
|
43 |
+
input_file = gr.File(file_count="multiple",label="PDF File")
|
44 |
+
openai_key = gr.Textbox(label="OpenAI API Key", type="password")
|
45 |
+
prompt = gr.Textbox(label="Question Prompt")
|
46 |
+
chain_type = gr.Radio(['stuff', 'map_reduce', "refine", "map_rerank"], label="Chain Type",default = 'map_reduce')
|
47 |
+
k = gr.Slider(minimum=1, maximum=5, default=2, label="Number of Relevant Chunks")
|
48 |
|
49 |
+
output_text = gr.Textbox(label="Answer")
|
50 |
+
output_docs = gr.Textbox(label="Relevant Source Text")
|
51 |
|
52 |
+
gr.Interface(qa_system, inputs=[input_file, openai_key, prompt, chain_type, k], outputs=[output_text, output_docs],
|
53 |
+
title="DocuAI",
|
54 |
description="Upload a PDF file, enter your OpenAI API key, type a question prompt, select a chain type, and choose the number of relevant chunks to use for the answer.").launch(debug = True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|