Spaces:
Runtime error
Runtime error
Commit
·
203e2cd
1
Parent(s):
e866a92
initial upload
Browse files
app.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from langchain.chains import RetrievalQA
|
4 |
+
from langchain.llms import OpenAI
|
5 |
+
from langchain.document_loaders import PyPDFLoader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain.embeddings import OpenAIEmbeddings
|
8 |
+
from langchain.vectorstores import Chroma
|
9 |
+
|
10 |
+
def qa_system(pdf_file, openai_key, prompt, chain_type, k):
|
11 |
+
os.environ["OPENAI_API_KEY"] = openai_key
|
12 |
+
|
13 |
+
# load document
|
14 |
+
loader = PyPDFLoader(pdf_file.name)
|
15 |
+
documents = loader.load()
|
16 |
+
|
17 |
+
# split the documents into chunks
|
18 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
19 |
+
texts = text_splitter.split_documents(documents)
|
20 |
+
|
21 |
+
# select which embeddings we want to use
|
22 |
+
embeddings = OpenAIEmbeddings()
|
23 |
+
|
24 |
+
# create the vectorestore to use as the index
|
25 |
+
db = Chroma.from_documents(texts, embeddings)
|
26 |
+
|
27 |
+
# expose this index in a retriever interface
|
28 |
+
retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": k})
|
29 |
+
|
30 |
+
# create a chain to answer questions
|
31 |
+
qa = RetrievalQA.from_chain_type(
|
32 |
+
llm=OpenAI(), chain_type=chain_type, retriever=retriever, return_source_documents=True)
|
33 |
+
|
34 |
+
# get the result
|
35 |
+
result = qa({"query": prompt})
|
36 |
+
return result['result'], [doc.page_content for doc in result["source_documents"]]
|
37 |
+
|
38 |
+
# define the Gradio interface
|
39 |
+
input_file = gr.inputs.File(label="PDF File")
|
40 |
+
openai_key = gr.inputs.Textbox(label="OpenAI API Key")
|
41 |
+
prompt = gr.inputs.Textbox(label="Question Prompt")
|
42 |
+
chain_type = gr.inputs.Radio(['stuff', 'map_reduce', "refine", "map_rerank"], label="Chain Type")
|
43 |
+
k = gr.inputs.Slider(minimum=1, maximum=5, default=1, label="Number of Relevant Chunks")
|
44 |
+
|
45 |
+
output_text = gr.outputs.Textbox(label="Answer")
|
46 |
+
output_docs = gr.outputs.Textbox(label="Relevant Source Text")
|
47 |
+
|
48 |
+
gr.Interface(qa_system, inputs=[input_file, openai_key, prompt, chain_type, k], outputs=[output_text, output_docs],
|
49 |
+
title="Question Answering with PDF File and OpenAI",
|
50 |
+
description="Upload a PDF file, enter your OpenAI API key, type a question prompt, select a chain type, and choose the number of relevant chunks to use for the answer.").launch(debug = True)
|
51 |
+
|
52 |
+
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|