Spaces:
Sleeping
Sleeping
rm app
Browse files
app.py
DELETED
@@ -1,431 +0,0 @@
|
|
1 |
-
import sys
|
2 |
-
|
3 |
-
from pathlib import Path
|
4 |
-
import string
|
5 |
-
import random
|
6 |
-
import torch
|
7 |
-
import numpy as np
|
8 |
-
import pickle
|
9 |
-
|
10 |
-
import gradio as gr
|
11 |
-
import pandas as pd
|
12 |
-
from scipy.special import softmax
|
13 |
-
import numpy as np
|
14 |
-
import seaborn as sns
|
15 |
-
import matplotlib.pyplot as plt
|
16 |
-
import hydra
|
17 |
-
from omegaconf import open_dict, DictConfig
|
18 |
-
import matplotlib.pyplot as plt
|
19 |
-
import matplotlib
|
20 |
-
from matplotlib.patches import Patch
|
21 |
-
sns.set()
|
22 |
-
sns.set_style("darkgrid")
|
23 |
-
|
24 |
-
from utils.data import *
|
25 |
-
from utils.metrics import *
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
def user_interface(Ufile, Pfile, Sfile=None, job_meta_file=None, user_meta_file=None, user_groups=None):
|
30 |
-
recdata = Data(Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups)
|
31 |
-
|
32 |
-
|
33 |
-
def calculate_user_item_metrics(res, S, U, k=10):
|
34 |
-
# get rec
|
35 |
-
m, n = res.shape
|
36 |
-
if not torch.is_tensor(res):
|
37 |
-
res = torch.from_numpy(res)
|
38 |
-
if not torch.is_tensor(U):
|
39 |
-
U = torch.from_numpy(U)
|
40 |
-
_, rec = torch.topk(res, k, dim=1)
|
41 |
-
rec_onehot = slow_onehot(rec, res)
|
42 |
-
# rec_onehot = F.one_hot(rec, num_classes=n).sum(1).float()
|
43 |
-
try:
|
44 |
-
rec_per_job = rec_onehot.sum(axis=0).numpy()
|
45 |
-
except:
|
46 |
-
rec_per_job = rec_onehot.sum(axis=0).cpu().numpy()
|
47 |
-
rec = rec.cpu()
|
48 |
-
S = S.cpu()
|
49 |
-
# envy
|
50 |
-
envy = expected_envy_torch_vec(U, rec_onehot, k=1).numpy()
|
51 |
-
|
52 |
-
# competitors for each rec job
|
53 |
-
competitors = get_competitors(rec_per_job, rec)
|
54 |
-
|
55 |
-
# rank
|
56 |
-
better_competitors = get_num_better_competitors(rec, S)
|
57 |
-
|
58 |
-
# scores per job for later zoom in scores
|
59 |
-
scores = get_scores_per_job(rec, S)
|
60 |
-
|
61 |
-
return {'rec': rec, 'envy': envy, 'competitors': competitors, 'ranks': better_competitors, 'scores_job': scores}
|
62 |
-
|
63 |
-
|
64 |
-
def plot_user_envy(user=0, k=2):
|
65 |
-
plt.close('all')
|
66 |
-
user = int(user)
|
67 |
-
if k in recdata.lookup_dict:
|
68 |
-
ret_dict = recdata.lookup_dict[k]
|
69 |
-
else:
|
70 |
-
ret_dict = calculate_user_item_metrics(recdata.P_sub, recdata.S_sub, recdata.U_sub, k=k)
|
71 |
-
recdata.lookup_dict[k] = ret_dict
|
72 |
-
# user's recommended jobs
|
73 |
-
users_rec = ret_dict['rec'][user].numpy()
|
74 |
-
# Plot
|
75 |
-
fig, ax1 = plt.subplots(figsize=(10, 5))
|
76 |
-
# fig.tight_layout()
|
77 |
-
fig.subplots_adjust(bottom=0.2)
|
78 |
-
|
79 |
-
envy = ret_dict['envy'].sum(-1)
|
80 |
-
envy_user = envy[user]
|
81 |
-
# plot envy histogram
|
82 |
-
n, bins, patches = ax1.hist(envy, bins=50, color='grey', alpha=0.5)
|
83 |
-
ax1.set_yscale('symlog')
|
84 |
-
sns.kdeplot(envy, color='grey', bw_adjust=0.3, cut=0, ax=ax1)
|
85 |
-
# mark this user's envy
|
86 |
-
# index of the bin that contains this user's envy
|
87 |
-
idx = np.digitize(envy_user, bins)
|
88 |
-
# print(envy_user, idx)
|
89 |
-
patches[idx-1].set_fc('r')
|
90 |
-
ax1.legend(handles=[Patch(facecolor='r', edgecolor='r', alpha=0.5,
|
91 |
-
label='Your envy group')])
|
92 |
-
ax1.set_xlabel('Envy')
|
93 |
-
ax1.set_ylabel('Number of users (log scale)')
|
94 |
-
|
95 |
-
return fig
|
96 |
-
|
97 |
-
def plot_user_scores(user=0, k=2):
|
98 |
-
user = int(user)
|
99 |
-
if k in recdata.lookup_dict:
|
100 |
-
ret_dict = recdata.lookup_dict[k]
|
101 |
-
else:
|
102 |
-
ret_dict = calculate_user_item_metrics(recdata.P_sub, recdata.S_sub, recdata.U_sub, k=k)
|
103 |
-
recdata.lookup_dict[k] = ret_dict
|
104 |
-
users_rec = ret_dict['rec'][user].numpy()
|
105 |
-
scores = ret_dict['scores_job']
|
106 |
-
|
107 |
-
# scores = [softmax(np.array(scores[jb])*0.5) for jb in users_rec]
|
108 |
-
scores = [scores[jb] for jb in users_rec]
|
109 |
-
|
110 |
-
rank_xs = [list(range(1, len(s)+1)) for s in scores]
|
111 |
-
my_ranks = [1+int(i) for i in ret_dict['ranks'][user]]
|
112 |
-
# my scores are the scores of the recommended jobs with rank
|
113 |
-
# my_scores = [scores[i][j] for i, j in enumerate(my_ranks)]
|
114 |
-
my_scores = [recdata.S_sub[user, job_id].item() for job_id in users_rec]
|
115 |
-
# my_scores_log = np.log(np.array(my_scores).astype(float))
|
116 |
-
ys = np.arange(len(users_rec))
|
117 |
-
# user's recommended jobs
|
118 |
-
if (user, k) in recdata.user_temp_data:
|
119 |
-
df = recdata.user_temp_data[(user, k)]
|
120 |
-
else:
|
121 |
-
df = pd.DataFrame({'x': rank_xs, 's': scores, 'y': ys})
|
122 |
-
df = df.explode(list('xs'))
|
123 |
-
recdata.user_temp_data[(user, k)] = df
|
124 |
-
|
125 |
-
# df['log_scores'] = np.log(df['s'].values.astype(float))
|
126 |
-
fig, ax = plt.subplots(figsize=(10, 5))
|
127 |
-
# fig.tight_layout()
|
128 |
-
fig.subplots_adjust(bottom=0.3)
|
129 |
-
|
130 |
-
def sub_cmap(cmap, vmin, vmax):
|
131 |
-
return lambda v: cmap(vmin + (vmax - vmin) * v)
|
132 |
-
|
133 |
-
# palette=matplotlib.cm.get_cmap('Greens').reversed()
|
134 |
-
# palette = sub_cmap(palette,0.2, 0.8)
|
135 |
-
|
136 |
-
sns.scatterplot(data=df, x="y", y="s", ax=ax, alpha=0.6,
|
137 |
-
legend=False, s=100, hue='y', palette="summer") #monotone color palette
|
138 |
-
sns.scatterplot(y=my_scores, x=range(k), ax=ax,
|
139 |
-
alpha=0.8, s=200, ec='r', fc='none', label='Your rank')
|
140 |
-
# add ranking of this user's score for each job
|
141 |
-
# find score gaps
|
142 |
-
gaps = np.diff(np.sort(scores[0])).mean()
|
143 |
-
for i, (y, x) in enumerate(zip(my_scores, range(k))):
|
144 |
-
ax.text(x-0.3, y+gaps, my_ranks[i], color='r', fontsize=15)
|
145 |
-
# add notation for 'rank'
|
146 |
-
# ax.text(-0.8, 1.12, 'Your rank', color='r', fontsize=12)
|
147 |
-
ax.set_xticks(range(k))
|
148 |
-
# shorten the job title
|
149 |
-
titles = [recdata.job_metadata[jb] for jb in users_rec]
|
150 |
-
titles = [t[:20] + '...' if len(t) > 20 else t for t in titles]
|
151 |
-
ax.set_xticklabels(titles, rotation=30, ha='right')
|
152 |
-
ax.set_xlabel('')
|
153 |
-
ax.set_xlim(-1, k)
|
154 |
-
# ax.grid(False)
|
155 |
-
ax.set_ylabel('Score')
|
156 |
-
# ax.set_ylim(-0.09, 1.2)
|
157 |
-
ax.legend()
|
158 |
-
return fig
|
159 |
-
|
160 |
-
|
161 |
-
# demo = gr.Blocks(gr.themes.Base.from_hub('finlaymacklon/smooth_slate'))
|
162 |
-
demo = gr.Blocks(gr.themes.Soft())
|
163 |
-
with demo:
|
164 |
-
def submit0(user, k):
|
165 |
-
fig = plot_user_envy(user, k)
|
166 |
-
return {
|
167 |
-
hist_plot: gr.update(value=fig, visible=True),
|
168 |
-
}
|
169 |
-
|
170 |
-
|
171 |
-
def submit2(user, k):
|
172 |
-
bar = plot_user_scores(user, k)
|
173 |
-
return {
|
174 |
-
bar_plot2: gr.update(value=bar, visible=True)
|
175 |
-
}
|
176 |
-
|
177 |
-
def submit(user):
|
178 |
-
new_job_num = random.randint(1,6)
|
179 |
-
# if new_job_num == 0, do nothing but clear the plots
|
180 |
-
if new_job_num > 0:
|
181 |
-
print(f'adding {new_job_num} new jobs')
|
182 |
-
recdata.update(new_user_num=0, new_job_num=new_job_num)
|
183 |
-
recdata.tweak_P(user)
|
184 |
-
|
185 |
-
return {
|
186 |
-
hist_plot: gr.update(visible=False),
|
187 |
-
bar_plot2: gr.update(visible=False)
|
188 |
-
}
|
189 |
-
|
190 |
-
# def submit_login(user):
|
191 |
-
# return {
|
192 |
-
# k: gr.update(visible=True),
|
193 |
-
# btn: gr.update(visible=True),
|
194 |
-
# btn0: gr.update(visible=True),
|
195 |
-
# btn2: gr.update(visible=True),
|
196 |
-
# pswd: gr.update(visible=False),
|
197 |
-
# lgbtn: gr.update(visible=False),
|
198 |
-
# }
|
199 |
-
|
200 |
-
|
201 |
-
# layout
|
202 |
-
gr.Markdown("## Job Recommendation Inferiority and Envy Monitor Demo")
|
203 |
-
|
204 |
-
with gr.Row():
|
205 |
-
with gr.Column(scale=1):
|
206 |
-
user = gr.Textbox(label='User ID',default='0', placeholder='Enter a random integer user ID')
|
207 |
-
# with gr.Column(scale=1):
|
208 |
-
# pswd = gr.Textbox(label='Password',default='********')
|
209 |
-
# with gr.Column(scale=1):
|
210 |
-
# lgbtn = gr.Button("Login")
|
211 |
-
# with gr.Row():
|
212 |
-
with gr.Column(scale=1):
|
213 |
-
k = gr.Slider(minimum=1, maximum=20,
|
214 |
-
default=4, step=1, label='Number of Jobs', visible=True)
|
215 |
-
with gr.Column(scale=1):
|
216 |
-
btn = gr.Button("Refresh to see new jobs", visible=True)
|
217 |
-
|
218 |
-
with gr.Tab('Envy'):
|
219 |
-
btn0 = gr.Button("User envy distribution", visible=True)
|
220 |
-
hist_plot = gr.Plot(visible=False)
|
221 |
-
|
222 |
-
with gr.Tab('Inferiority'):
|
223 |
-
with gr.Row():
|
224 |
-
# btn1 = gr.Button("User ranks for the recommended jobs")
|
225 |
-
btn2 = gr.Button("User scores/ranks for the recommended jobs", visible=True)
|
226 |
-
|
227 |
-
# bar_plot = gr.Plot()
|
228 |
-
bar_plot2 = gr.Plot(visible=False)
|
229 |
-
|
230 |
-
# lgbtn.click(submit_login, inputs=[user], outputs=[k, btn, btn0, btn2, pswd, lgbtn])
|
231 |
-
btn.click(submit, inputs=[user], outputs=[hist_plot, bar_plot2])
|
232 |
-
btn0.click(submit0, inputs=[user, k], outputs=[hist_plot])
|
233 |
-
# btn1.click(submit1, inputs=[user, k], outputs=[bar_plot])
|
234 |
-
btn2.click(submit2, inputs=[user, k], outputs=[bar_plot2])
|
235 |
-
|
236 |
-
return demo
|
237 |
-
|
238 |
-
|
239 |
-
def developer_interface(Ufile, Pfile, Sfile=None, job_meta_file=None, user_meta_file=None, user_groups=None):
|
240 |
-
|
241 |
-
recdata = Data(Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups, sub_sample_size=500)
|
242 |
-
|
243 |
-
def calculate_all_metrics(k, S_sub, U_sub, P_sub):
|
244 |
-
print('calculating all metrics')
|
245 |
-
if k in recdata.lookup_dict:
|
246 |
-
print('Found in lookup dict')
|
247 |
-
return recdata.lookup_dict[k]
|
248 |
-
else:
|
249 |
-
if not torch.is_tensor(P_sub):
|
250 |
-
P_sub = torch.from_numpy(P_sub)
|
251 |
-
envy, inferiority, utility = eiu_cut_off2(
|
252 |
-
(S_sub, U_sub), P_sub, k=k, agg=False)
|
253 |
-
envy = envy.sum(-1)
|
254 |
-
inferiority = inferiority.sum(-1)
|
255 |
-
|
256 |
-
_, rec = torch.topk(P_sub, k=k, dim=1)
|
257 |
-
rec_onehot = slow_onehot(rec, P_sub)
|
258 |
-
try:
|
259 |
-
rec_per_job = rec_onehot.sum(axis=0).numpy()
|
260 |
-
except:
|
261 |
-
rec_per_job = rec_onehot.sum(axis=0).cpu().numpy()
|
262 |
-
rec = rec.cpu()
|
263 |
-
metrics_at_k = {'rec': rec, 'envy': envy, 'inferiority': inferiority, 'utility': utility,
|
264 |
-
'rec_per_job': rec_per_job}
|
265 |
-
print('Finished calculating all metrics')
|
266 |
-
return metrics_at_k
|
267 |
-
|
268 |
-
def plot_user_box(metrics_dict):
|
269 |
-
print('plotting user box')
|
270 |
-
plt.close('all')
|
271 |
-
envy = metrics_dict['envy'].numpy()
|
272 |
-
inferiority = metrics_dict['inferiority'].numpy()
|
273 |
-
fig, (ax1, ax2) = plt.subplots(ncols=2)
|
274 |
-
fig.tight_layout()
|
275 |
-
ax1.boxplot(envy)
|
276 |
-
ax1.set_ylabel('envy')
|
277 |
-
ax1.set_title('Envy')
|
278 |
-
ax1.set_xticks([])
|
279 |
-
ax2.boxplot(inferiority)
|
280 |
-
ax2.set_ylabel('inferiority')
|
281 |
-
ax2.set_title('Inferiority')
|
282 |
-
ax2.set_xticks([])
|
283 |
-
return fig
|
284 |
-
|
285 |
-
def plot_scatter(k, group=None):
|
286 |
-
print('plotting scatter')
|
287 |
-
plt.close('all')
|
288 |
-
if group == 'None':
|
289 |
-
group = None
|
290 |
-
if k in recdata.lookup_dict:
|
291 |
-
metrics_dict = recdata.lookup_dict[k]
|
292 |
-
else:
|
293 |
-
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
|
294 |
-
recdata.lookup_dict[k] = metrics_dict
|
295 |
-
|
296 |
-
data = {'log(envy+1)': np.log(metrics_dict['envy']+1),
|
297 |
-
'inferiority': metrics_dict['inferiority']}
|
298 |
-
data = pd.DataFrame(data)
|
299 |
-
data = data.join(recdata.user_metadata)
|
300 |
-
fig, ax = plt.subplots()
|
301 |
-
sns.scatterplot(data=data, x='log(envy+1)', y='inferiority', hue=group, ax=ax)
|
302 |
-
return fig
|
303 |
-
|
304 |
-
def lorenz_curve(X, ax, label):
|
305 |
-
# ref: https://zhiyzuo.github.io/Plot-Lorenz/
|
306 |
-
X.sort()
|
307 |
-
X_lorenz = X.cumsum() / X.sum()
|
308 |
-
X_lorenz = np.insert(X_lorenz, 0, 0)
|
309 |
-
X_lorenz[0], X_lorenz[-1]
|
310 |
-
|
311 |
-
ax.plot(np.arange(X_lorenz.size) / (X_lorenz.size - 1), X_lorenz, label=label)
|
312 |
-
## line plot of equality
|
313 |
-
ax.plot([0, 1], [0, 1], linestyle='dashed', color='k')
|
314 |
-
return ax
|
315 |
-
|
316 |
-
def plot_item(rec_per_job):
|
317 |
-
print('plotting item')
|
318 |
-
plt.close('all')
|
319 |
-
fig, (ax1, ax2) = plt.subplots(nrows=2, figsize=(10, 10))
|
320 |
-
fig.tight_layout(pad=5.0)
|
321 |
-
labels, counts = np.unique(rec_per_job, return_counts=True)
|
322 |
-
ax1.bar(labels, counts, align='center')
|
323 |
-
|
324 |
-
ax1.set_xlabel('Number of times a job is recommended')
|
325 |
-
ax1.set_ylabel('Number of jobs')
|
326 |
-
ax1.set_title('Distribution of job exposure')
|
327 |
-
ax2 = lorenz_curve(rec_per_job, ax2,'')
|
328 |
-
ax2.set_title('Lorenz Curve')
|
329 |
-
return fig
|
330 |
-
|
331 |
-
|
332 |
-
# build the interface
|
333 |
-
demo = gr.Blocks(gr.themes.Soft())
|
334 |
-
with demo:
|
335 |
-
# callbacks
|
336 |
-
def submit_u():
|
337 |
-
# generate two random integers including 0 representing user num and job num
|
338 |
-
user_num = np.random.randint(0, 5)
|
339 |
-
job_num = np.random.randint(0, 5)
|
340 |
-
|
341 |
-
if user_num > 0 or job_num > 0:
|
342 |
-
recdata.update(user_num, job_num)
|
343 |
-
|
344 |
-
return{
|
345 |
-
info: gr.update(value='New {} users and {} jobs'.format(user_num, job_num),visible=True),
|
346 |
-
}
|
347 |
-
|
348 |
-
|
349 |
-
def submit1(k):
|
350 |
-
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
|
351 |
-
return {
|
352 |
-
user_box_plot: plot_user_box(metrics_dict),
|
353 |
-
scatter_plot: plot_scatter(k),
|
354 |
-
btn2: gr.update(visible=True)
|
355 |
-
}
|
356 |
-
|
357 |
-
def submit2():
|
358 |
-
return {
|
359 |
-
radio: gr.update(visible=True)
|
360 |
-
}
|
361 |
-
|
362 |
-
def submit3(k):
|
363 |
-
metrics_dict = calculate_all_metrics(k, recdata.S_sub, recdata.U_sub, recdata.P_sub)
|
364 |
-
return {
|
365 |
-
item_plots: plot_item(metrics_dict['rec_per_job'])
|
366 |
-
}
|
367 |
-
|
368 |
-
# layout
|
369 |
-
gr.Markdown("## Envy & Inferiority Monitor for Developers Demo")
|
370 |
-
# 1. accept k
|
371 |
-
with gr.Row():
|
372 |
-
with gr.Column(scale=1):
|
373 |
-
k = gr.inputs.Slider(minimum=1, maximum=min(30,len(
|
374 |
-
recdata.P[0])), default=1, step=1, label='Number of Jobs')
|
375 |
-
with gr.Column(scale=1):
|
376 |
-
btn = gr.Button('Refresh')
|
377 |
-
with gr.Column(scale=1):
|
378 |
-
info = gr.Textbox('', label='Updated info', visible=False)
|
379 |
-
btn.click(submit_u, inputs=[], outputs=[info])
|
380 |
-
|
381 |
-
|
382 |
-
with gr.Tab('User'):
|
383 |
-
plt.close('all')
|
384 |
-
btn1 = gr.Button('Visualize user-side fairness')
|
385 |
-
user_box_plot = gr.Plot()
|
386 |
-
scatter_plot = gr.Plot()
|
387 |
-
|
388 |
-
btn2 = gr.Button('Visualize intra-group fairness', visible=False)
|
389 |
-
|
390 |
-
radio = gr.Radio(choices=user_groups, value=user_groups[0] if len(user_groups) > 0 else "",
|
391 |
-
interactive=True, label="User group", visible=False)
|
392 |
-
|
393 |
-
btn1.click(submit1, inputs=[k], outputs=[
|
394 |
-
user_box_plot, scatter_plot, btn2])
|
395 |
-
btn2.click(submit2, inputs=[], outputs=[radio])
|
396 |
-
radio.change(fn=plot_scatter, inputs=[
|
397 |
-
k, radio], outputs=[scatter_plot])
|
398 |
-
|
399 |
-
with gr.Tab('Item'):
|
400 |
-
plt.close('all')
|
401 |
-
btn3 = gr.Button('Visualize item-side fairness')
|
402 |
-
item_plots = gr.Plot()
|
403 |
-
btn3.click(submit3, inputs=[k], outputs=[item_plots])
|
404 |
-
|
405 |
-
return demo
|
406 |
-
|
407 |
-
|
408 |
-
@hydra.main(version_base=None, config_path='./utils', config_name='monitor')
|
409 |
-
def main(config: DictConfig):
|
410 |
-
print(config)
|
411 |
-
Ufile = config.Ufile
|
412 |
-
Sfile = config.Sfile
|
413 |
-
Pfile = config.Pfile
|
414 |
-
user_meta_file = config.user_meta_file
|
415 |
-
job_meta_file = config.job_meta_file
|
416 |
-
user_groups = ['None'] + \
|
417 |
-
list(config.user_groups) if config.user_groups else ['None']
|
418 |
-
server_name = config.server_name
|
419 |
-
role = config.role
|
420 |
-
if role == 'user':
|
421 |
-
demo = user_interface(Ufile, Pfile, Sfile,
|
422 |
-
job_meta_file, user_meta_file, user_groups)
|
423 |
-
elif role == 'developer':
|
424 |
-
demo = developer_interface(
|
425 |
-
Ufile, Pfile, Sfile, job_meta_file, user_meta_file, user_groups)
|
426 |
-
demo.launch(server_name=server_name, server_port=config.server_port)
|
427 |
-
# demo.launch()
|
428 |
-
|
429 |
-
|
430 |
-
if __name__ == "__main__":
|
431 |
-
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|