Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,138 @@
|
|
1 |
-
import
|
2 |
import numpy as np
|
|
|
|
|
|
|
3 |
import gradio as gr
|
4 |
-
from
|
5 |
-
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
return
|
45 |
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
if effect == "Gaussian Blur Background":
|
48 |
-
return
|
49 |
elif effect == "Depth-based Lens Blur":
|
50 |
-
return
|
51 |
else:
|
52 |
-
return
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
-
# Updated Gradio interface using the new API components.
|
55 |
iface = gr.Interface(
|
56 |
fn=process_image,
|
57 |
inputs=[
|
@@ -60,7 +141,10 @@ iface = gr.Interface(
|
|
60 |
],
|
61 |
outputs=gr.Image(type="pil", label="Output Image"),
|
62 |
title="Blur Effects Demo",
|
63 |
-
description=
|
|
|
|
|
|
|
64 |
)
|
65 |
|
66 |
if __name__ == "__main__":
|
|
|
1 |
+
import io
|
2 |
import numpy as np
|
3 |
+
import torch
|
4 |
+
from PIL import Image, ImageFilter
|
5 |
+
from torchvision import transforms
|
6 |
import gradio as gr
|
7 |
+
from transformers import AutoModelForImageSegmentation, pipeline
|
8 |
+
|
9 |
+
# ----------------------------
|
10 |
+
# Global Setup and Model Loading
|
11 |
+
# ----------------------------
|
12 |
+
|
13 |
+
# Set device (GPU if available, else CPU)
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
# Load the segmentation model (RMBG-2.0)
|
17 |
+
segmentation_model = AutoModelForImageSegmentation.from_pretrained(
|
18 |
+
'briaai/RMBG-2.0',
|
19 |
+
trust_remote_code=True
|
20 |
+
)
|
21 |
+
segmentation_model.to(device)
|
22 |
+
segmentation_model.eval()
|
23 |
+
|
24 |
+
# Define the image transformation for segmentation (resize to 512x512)
|
25 |
+
image_size = (512, 512)
|
26 |
+
segmentation_transform = transforms.Compose([
|
27 |
+
transforms.Resize(image_size),
|
28 |
+
transforms.ToTensor(),
|
29 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
|
30 |
+
])
|
31 |
+
|
32 |
+
# Load the depth estimation pipeline (Depth-Anything)
|
33 |
+
depth_pipeline = pipeline("depth-estimation", model="depth-anything/Depth-Anything-V2-Small-hf")
|
34 |
+
|
35 |
+
|
36 |
+
# ----------------------------
|
37 |
+
# Processing Functions
|
38 |
+
# ----------------------------
|
39 |
+
|
40 |
+
def segment_and_blur_background(input_image: Image.Image, blur_radius: int = 15, threshold: float = 0.5) -> Image.Image:
|
41 |
+
"""
|
42 |
+
Applies segmentation using the RMBG-2.0 model and then uses the segmentation mask
|
43 |
+
to composite a Gaussian-blurred background with a sharp foreground.
|
44 |
+
"""
|
45 |
+
# Ensure the image is in RGB and get its original dimensions
|
46 |
+
image = input_image.convert("RGB")
|
47 |
+
orig_width, orig_height = image.size
|
48 |
+
|
49 |
+
# Preprocess image for segmentation
|
50 |
+
input_tensor = segmentation_transform(image).unsqueeze(0).to(device)
|
51 |
+
|
52 |
+
# Run inference on the segmentation model
|
53 |
+
with torch.no_grad():
|
54 |
+
preds = segmentation_model(input_tensor)[-1].sigmoid().cpu()
|
55 |
+
pred = preds[0].squeeze()
|
56 |
|
57 |
+
# Create a binary mask using the threshold
|
58 |
+
binary_mask = (pred > threshold).float()
|
59 |
+
mask_pil = transforms.ToPILImage()(binary_mask).convert("L")
|
60 |
+
# Convert grayscale mask to pure binary (0 or 255)
|
61 |
+
mask_pil = mask_pil.point(lambda p: 255 if p > 128 else 0)
|
62 |
+
# Resize mask back to the original image dimensions
|
63 |
+
mask_pil = mask_pil.resize((orig_width, orig_height), resample=Image.BILINEAR)
|
64 |
|
65 |
+
# Apply Gaussian blur to the entire image for background
|
66 |
+
blurred_image = image.filter(ImageFilter.GaussianBlur(blur_radius))
|
67 |
+
# Composite the original image (foreground) with the blurred image (background) using the mask
|
68 |
+
final_image = Image.composite(image, blurred_image, mask_pil)
|
69 |
+
return final_image
|
70 |
|
71 |
+
|
72 |
+
def depth_based_lens_blur(input_image: Image.Image, max_blur: float = 2, num_bands: int = 40, invert_depth: bool = False) -> Image.Image:
|
73 |
+
"""
|
74 |
+
Applies a depth-based blur effect using a depth map produced by Depth-Anything.
|
75 |
+
The effect simulates a lens blur by applying different blur strengths in depth bands.
|
76 |
+
"""
|
77 |
+
# Resize the input image to 512x512 for the depth estimation model
|
78 |
+
image_resized = input_image.resize((512, 512))
|
79 |
+
|
80 |
+
# Run depth estimation to obtain the depth map (as a PIL image)
|
81 |
+
results = depth_pipeline(image_resized)
|
82 |
+
depth_map_image = results['depth']
|
83 |
+
|
84 |
+
# Convert the depth map to a NumPy array and normalize to [0, 1]
|
85 |
+
depth_array = np.array(depth_map_image, dtype=np.float32)
|
86 |
+
d_min, d_max = depth_array.min(), depth_array.max()
|
87 |
+
depth_norm = (depth_array - d_min) / (d_max - d_min + 1e-8)
|
88 |
+
if invert_depth:
|
89 |
+
depth_norm = 1.0 - depth_norm
|
90 |
+
|
91 |
+
# Convert the resized image to RGBA for compositing
|
92 |
+
orig_rgba = image_resized.convert("RGBA")
|
93 |
+
final_image = orig_rgba.copy()
|
94 |
+
|
95 |
+
# Divide the normalized depth range into bands
|
96 |
+
band_edges = np.linspace(0, 1, num_bands + 1)
|
97 |
+
for i in range(num_bands):
|
98 |
+
band_min = band_edges[i]
|
99 |
+
band_max = band_edges[i + 1]
|
100 |
+
# Use the midpoint of the band to determine the blur strength.
|
101 |
+
mid = (band_min + band_max) / 2.0
|
102 |
+
blur_radius_band = (1 - mid) * max_blur
|
103 |
+
|
104 |
+
# Create a blurred version of the image for this band.
|
105 |
+
blurred_version = orig_rgba.filter(ImageFilter.GaussianBlur(blur_radius_band))
|
106 |
+
|
107 |
+
# Create a mask for pixels whose normalized depth falls within this band.
|
108 |
+
band_mask = ((depth_norm >= band_min) & (depth_norm < band_max)).astype(np.uint8) * 255
|
109 |
+
band_mask_pil = Image.fromarray(band_mask, mode="L")
|
110 |
+
|
111 |
+
# Composite the blurred version with the current final image using the band mask.
|
112 |
+
final_image = Image.composite(blurred_version, final_image, band_mask_pil)
|
113 |
+
|
114 |
+
# Return the final composited image as RGB.
|
115 |
+
return final_image.convert("RGB")
|
116 |
+
|
117 |
+
|
118 |
+
def process_image(input_image: Image.Image, effect: str) -> Image.Image:
|
119 |
+
"""
|
120 |
+
Dispatch function to apply the selected effect:
|
121 |
+
- "Gaussian Blur Background": uses segmentation and Gaussian blur.
|
122 |
+
- "Depth-based Lens Blur": applies depth-based blur using the estimated depth map.
|
123 |
+
"""
|
124 |
if effect == "Gaussian Blur Background":
|
125 |
+
return segment_and_blur_background(input_image)
|
126 |
elif effect == "Depth-based Lens Blur":
|
127 |
+
return depth_based_lens_blur(input_image)
|
128 |
else:
|
129 |
+
return input_image
|
130 |
+
|
131 |
+
|
132 |
+
# ----------------------------
|
133 |
+
# Gradio Interface
|
134 |
+
# ----------------------------
|
135 |
|
|
|
136 |
iface = gr.Interface(
|
137 |
fn=process_image,
|
138 |
inputs=[
|
|
|
141 |
],
|
142 |
outputs=gr.Image(type="pil", label="Output Image"),
|
143 |
title="Blur Effects Demo",
|
144 |
+
description=(
|
145 |
+
"Upload an image and choose an effect: "
|
146 |
+
"apply segmentation + Gaussian blurred background, or a depth-based lens blur effect."
|
147 |
+
)
|
148 |
)
|
149 |
|
150 |
if __name__ == "__main__":
|