kuzumab's picture
Update app.py
c16665c verified
import os
import gradio as gr
import requests
import inspect
import pandas as pd
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel, VisitWebpageTool, Tool, HfApiModel, ToolCallingAgent
import io
import base64
from langchain.agents import load_tools
# (Keep Constants as is)
# --- Constants ---
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
# Get your own keys from https://cloud.langfuse.com
os.environ["LANGFUSE_HOST"] = "https://cloud.langfuse.com" # 🇪🇺 EU region example
# os.environ["LANGFUSE_HOST"] = "https://us.cloud.langfuse.com" # 🇺🇸 US region example
LANGFUSE_AUTH = base64.b64encode(
f"{os.getenv('LANGFUSE_PUBLIC_KEY')}:{os.getenv('LANGFUSE_SECRET_KEY')}".encode()
).decode()
os.environ["OTEL_EXPORTER_OTLP_ENDPOINT"] = os.environ.get("LANGFUSE_HOST") + "/api/public/otel"
os.environ["OTEL_EXPORTER_OTLP_HEADERS"] = f"Authorization=Basic {LANGFUSE_AUTH}"
class AttachmentDownloadTool(Tool):
name = "attachment_downloader"
description = "If you need to get attachment from task, you can downloads the file associated with the given task_id. If it does not exist, return None. input: task_id。output: attachment files bytes or None"
inputs = {
"task_id": {
"type": "string",
"description": "task_id that needs to download attachment files."
}
}
output_type = "any"
def forward(self, task_id):
download_url = f"{DEFAULT_API_URL}/files/"
try:
response = requests.get(download_url + task_id, stream=True, timeout=15)
if response.status_code != 200:
return None
return response.content
except Exception as e:
return None
class ImageCaptionTool(Tool):
name = "image_captioner"
description = "Identify the content of the input image and describe it in natural language. Input: image. Output: description text."
inputs = {
"image": {
"type": "image",
"description": "Images that need to be identified and described"
}
}
output_type = "string"
def setup(self):
self.model = OpenAIServerModel(
model_id="Qwen/Qwen2.5-VL-32B-Instruct",
api_base="https://api.siliconflow.cn/v1/",
api_key=os.getenv('MODEL_TOKEN'),
)
def forward(self, image):
prompt = "Please describe the content of this picture in detail."
result = self.model(prompt, images=[image])
# 兼容AgentText等包装类型,确保返回str
if hasattr(result, "to_raw"):
return result.to_raw()
if hasattr(result, "value"):
return result.value
return str(result)
class AudioToTextTool(Tool):
name = "audio_to_text"
description = "Convert the input audio content to text. Input: audio. Output: text."
inputs = {
"audio": {
"type": "audio",
"description": "The audio file that needs to be transcribed"
}
}
output_type = "string"
def setup(self):
# 使用 HuggingFace Hub 上的 Whisper 大模型
self.model = HfApiModel(model_id="openai/whisper-large-v3") # 或其他支持音频转写的模型
def forward(self, audio):
prompt = "Please transcribe this audio content into text."
result = self.model(prompt, audios=[audio])
if hasattr(result, "to_raw"):
return result.to_raw()
if hasattr(result, "value"):
return result.value
return str(result)
# --- Basic Agent Definition ---
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------
# class BasicAgent:
# def __init__(self):
# print("BasicAgent initialized.")
# def __call__(self, question: str) -> str:
# print(f"Agent received question (first 50 chars): {question[:50]}...")
# fixed_answer = "This is a default answer."
# print(f"Agent returning fixed answer: {fixed_answer}")
# return fixed_answer
class BasicAgent:
def __init__(self):
wiki_tool = Tool.from_langchain(load_tools(["wikipedia"])[0])
self.think_model = OpenAIServerModel(
model_id="THUDM/GLM-4-32B-0414",
api_base="https://api.siliconflow.cn/v1/",
api_key=os.getenv('MODEL_TOKEN'),
)
self.base_model = OpenAIServerModel(
model_id="Qwen/Qwen2.5-32B-Instruct",
api_base="https://api.siliconflow.cn/v1/",
api_key=os.getenv('MODEL_TOKEN'),
)
# self.vision_model = OpenAIServerModel(
# model_id="Qwen/Qwen2.5-VL-32B-Instruct",
# api_base="https://api.siliconflow.cn/v1/",
# api_key=os.getenv('MODEL_TOKEN'),
# )
attachment_tool=AttachmentDownloadTool()
image_tool=ImageCaptionTool()
audio_tool=AudioToTextTool()
self.tools = [attachment_tool,image_tool,audio_tool,wiki_tool,DuckDuckGoSearchTool(), VisitWebpageTool()]
# self.tools = [attachment_tool,image_tool,audio_tool]
web_agent = CodeAgent(
tools=[DuckDuckGoSearchTool(), VisitWebpageTool()],
model=self.base_model,
max_steps=10,
name="web_search_agent",
description="Runs web searches for you.",
)
self.agent = CodeAgent(
tools=self.tools,
model=self.think_model,
# managed_agents=[web_agent],
additional_authorized_imports=["time", "numpy", "pandas"],
max_steps=10
)
print("BasicAgent initialized.")
def __call__(self, question: str, images=None) -> str:
print(f"Agent received question (first 50 chars): {question[:50]}...")
try:
if images is not None:
result = self.agent.run(question, images=images)
else:
result = self.agent.run(question)
print(f"Agent returning answer: {result}")
return result
except Exception as e:
print(f"Agent error: {e}")
return f"AGENT ERROR: {e}"
def run_and_submit_all( profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code
if profile:
username= f"{profile.username}"
print(f"User logged in: {username}")
else:
print("User not logged in.")
return "Please Login to Hugging Face with the button.", None
api_url = DEFAULT_API_URL
questions_url = f"{api_url}/questions"
submit_url = f"{api_url}/submit"
from opentelemetry.sdk.trace import TracerProvider
from openinference.instrumentation.smolagents import SmolagentsInstrumentor
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import SimpleSpanProcessor
# Create a TracerProvider for OpenTelemetry
trace_provider = TracerProvider()
# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces
trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))
# Set the global default tracer provider
from opentelemetry import trace
trace.set_tracer_provider(trace_provider)
tracer = trace.get_tracer(__name__)
# Instrument smolagents with the configured provider
SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)
# 1. Instantiate Agent ( modify this part to create your agent)
try:
agent = BasicAgent()
except Exception as e:
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public)
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
print(agent_code)
# 2. Fetch Questions
print(f"Fetching questions from: {questions_url}")
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print("Fetched questions list is empty.")
return "Fetched questions list is empty or invalid format.", None
print(f"Fetched {len(questions_data)} questions.")
except requests.exceptions.RequestException as e:
print(f"Error fetching questions: {e}")
return f"Error fetching questions: {e}", None
except requests.exceptions.JSONDecodeError as e:
print(f"Error decoding JSON response from questions endpoint: {e}")
print(f"Response text: {response.text[:500]}")
return f"Error decoding server response for questions: {e}", None
except Exception as e:
print(f"An unexpected error occurred fetching questions: {e}")
return f"An unexpected error occurred fetching questions: {e}", None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f"Running agent on {len(questions_data)} questions...")
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f"Skipping item with missing task_id or question: {item}")
continue
try:
submitted_answer = agent("You have got a task, task id is "+task_id+question_text)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer})
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"})
if not answers_payload:
print("Agent did not produce any answers to submit.")
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..."
print(status_update)
# 5. Submit
print(f"Submitting {len(answers_payload)} answers to: {submit_url}")
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print("Submission successful.")
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e:
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click(
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.")
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)