Spaces:
Sleeping
Sleeping
import os | |
import gradio as gr | |
import requests | |
import inspect | |
import pandas as pd | |
from smolagents import CodeAgent, DuckDuckGoSearchTool, OpenAIServerModel, VisitWebpageTool, Tool, HfApiModel, ToolCallingAgent | |
import io | |
# (Keep Constants as is) | |
# --- Constants --- | |
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space" | |
class AttachmentDownloadTool(Tool): | |
name = "attachment_downloader" | |
description = "Downloads the file associated with the given task_id. If it does not exist, return None. input: task_id。output: attachment files bytes or None" | |
inputs = { | |
"task_id": { | |
"type": "string", | |
"description": "task_id that needs to download attachment files." | |
} | |
} | |
output_type = "bytes" | |
def forward(self, task_id): | |
download_url = f"{api_url}/files/" | |
try: | |
response = requests.get(download_url + task_id, stream=True, timeout=15) | |
if response.status_code != 200: | |
return None | |
return response.content | |
except Exception as e: | |
return None | |
class ImageCaptionTool(Tool): | |
name = "image_captioner" | |
description = "Identify the content of the input image and describe it in natural language. Input: image. Output: description text." | |
inputs = { | |
"image": { | |
"type": "image", | |
"description": "Images that need to be identified and described" | |
} | |
} | |
output_type = "str" | |
def setup(self): | |
self.model = OpenAIServerModel( | |
model_id="Qwen/Qwen2.5-VL-32B-Instruct", | |
api_base="https://api.siliconflow.cn/v1/", | |
api_key=os.getenv('MODEL_TOKEN'), | |
) | |
def forward(self, image): | |
prompt = "Please describe the content of this picture in detail." | |
result = self.model(prompt, images=[image]) | |
# 兼容AgentText等包装类型,确保返回str | |
if hasattr(result, "to_raw"): | |
return result.to_raw() | |
if hasattr(result, "value"): | |
return result.value | |
return str(result) | |
class AudioToTextTool(Tool): | |
name = "audio_to_text" | |
description = "Convert the input audio content to text. Input: audio. Output: text." | |
inputs = { | |
"audio": { | |
"type": "audio", | |
"description": "The audio file that needs to be transcribed" | |
} | |
} | |
output_type = "str" | |
def setup(self): | |
# 使用 HuggingFace Hub 上的 Whisper 大模型 | |
self.model = HfApiModel(model_id="openai/whisper-large-v3") # 或其他支持音频转写的模型 | |
def forward(self, audio): | |
prompt = "Please transcribe this audio content into text." | |
result = self.model(prompt, audios=[audio]) | |
if hasattr(result, "to_raw"): | |
return result.to_raw() | |
if hasattr(result, "value"): | |
return result.value | |
return str(result) | |
# --- Basic Agent Definition --- | |
# ----- THIS IS WERE YOU CAN BUILD WHAT YOU WANT ------ | |
# class BasicAgent: | |
# def __init__(self): | |
# print("BasicAgent initialized.") | |
# def __call__(self, question: str) -> str: | |
# print(f"Agent received question (first 50 chars): {question[:50]}...") | |
# fixed_answer = "This is a default answer." | |
# print(f"Agent returning fixed answer: {fixed_answer}") | |
# return fixed_answer | |
class BasicAgent: | |
def __init__(self): | |
self.think_model = OpenAIServerModel( | |
model_id="THUDM/GLM-Z1-32B-0414", | |
api_base="https://api.siliconflow.cn/v1/", | |
api_key=os.getenv('MODEL_TOKEN'), | |
) | |
self.base_model = OpenAIServerModel( | |
model_id="THUDM/GLM-4-32B-0414", | |
api_base="https://api.siliconflow.cn/v1/", | |
api_key=os.getenv('MODEL_TOKEN'), | |
) | |
# self.vision_model = OpenAIServerModel( | |
# model_id="Qwen/Qwen2.5-VL-32B-Instruct", | |
# api_base="https://api.siliconflow.cn/v1/", | |
# api_key=os.getenv('MODEL_TOKEN'), | |
# ) | |
attachment_tool=AttachmentDownloadTool() | |
image_tool=ImageCaptionTool() | |
audio_tool=AudioToTextTool() | |
self.tools = [attachment_tool,image_tool,audio_tool,DuckDuckGoSearchTool(), VisitWebpageTool()] | |
# web_agent = ToolCallingAgent( | |
# tools=[DuckDuckGoSearchTool(), VisitWebpageTool()], | |
# model=self.base_model, | |
# max_steps=10, | |
# name="web_search_agent", | |
# description="Runs web searches for you.", | |
# ) | |
self.agent = CodeAgent( | |
tools=self.tools, | |
model=self.think_model, | |
# managed_agents=[web_agent], | |
additional_authorized_imports=["time", "numpy", "pandas"], | |
max_steps=20 | |
) | |
print("BasicAgent initialized.") | |
def __call__(self, question: str, images=None) -> str: | |
print(f"Agent received question (first 50 chars): {question[:50]}...") | |
try: | |
if images is not None: | |
result = self.agent.run(question, images=images) | |
else: | |
result = self.agent.run(question) | |
print(f"Agent returning answer: {result}") | |
return result | |
except Exception as e: | |
print(f"Agent error: {e}") | |
return f"AGENT ERROR: {e}" | |
def run_and_submit_all( profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv("SPACE_ID") # Get the SPACE_ID for sending link to the code | |
if profile: | |
username= f"{profile.username}" | |
print(f"User logged in: {username}") | |
else: | |
print("User not logged in.") | |
return "Please Login to Hugging Face with the button.", None | |
api_url = DEFAULT_API_URL | |
questions_url = f"{api_url}/questions" | |
submit_url = f"{api_url}/submit" | |
# 1. Instantiate Agent ( modify this part to create your agent) | |
try: | |
agent = BasicAgent() | |
except Exception as e: | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your codebase ( usefull for others so please keep it public) | |
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main" | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f"Fetching questions from: {questions_url}") | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print("Fetched questions list is empty.") | |
return "Fetched questions list is empty or invalid format.", None | |
print(f"Fetched {len(questions_data)} questions.") | |
except requests.exceptions.RequestException as e: | |
print(f"Error fetching questions: {e}") | |
return f"Error fetching questions: {e}", None | |
except requests.exceptions.JSONDecodeError as e: | |
print(f"Error decoding JSON response from questions endpoint: {e}") | |
print(f"Response text: {response.text[:500]}") | |
return f"Error decoding server response for questions: {e}", None | |
except Exception as e: | |
print(f"An unexpected error occurred fetching questions: {e}") | |
return f"An unexpected error occurred fetching questions: {e}", None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f"Running agent on {len(questions_data)} questions...") | |
for item in questions_data: | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f"Skipping item with missing task_id or question: {item}") | |
continue | |
try: | |
submitted_answer = agent(question_text) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": submitted_answer}) | |
except Exception as e: | |
print(f"Error running agent on task {task_id}: {e}") | |
results_log.append({"Task ID": task_id, "Question": question_text, "Submitted Answer": f"AGENT ERROR: {e}"}) | |
if not answers_payload: | |
print("Agent did not produce any answers to submit.") | |
return "Agent did not produce any answers to submit.", pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload} | |
status_update = f"Agent finished. Submitting {len(answers_payload)} answers for user '{username}'..." | |
print(status_update) | |
# 5. Submit | |
print(f"Submitting {len(answers_payload)} answers to: {submit_url}") | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print("Submission successful.") | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit button, it can take quite some time ( this is the time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage you to develop your own, more robust solution. For instance for the delay process of the submit button, a solution could be to cache the answers and submit in a seperate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print("ℹ️ SPACE_ID environment variable not found (running locally?). Repo URL cannot be determined.") | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) |