File size: 5,859 Bytes
d63aa22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d71a127
d63aa22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import validators
import streamlit as st
from urllib.parse import urlparse, parse_qs
from langchain.prompts import PromptTemplate
from langchain.chains.summarize import load_summarize_chain
from langchain_core.documents import Document
from langchain_community.document_loaders import UnstructuredURLLoader
from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled
import yt_dlp
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI
from langchain_huggingface import HuggingFaceEndpoint
from fpdf import FPDF


# πŸ”§ Streamlit Page Setup
st.set_page_config(page_title="🦜 LangChain: All-in-One Summarizer", page_icon="🧠", layout="centered")
st.title("🧠 LangChain: All-in-One Summarizer")
st.caption("Summarize πŸ“Ή YouTube videos or 🌐 Web pages using your favorite LLM provider.")

# πŸ”‘ Sidebar Inputs
with st.sidebar:
    st.header("πŸ”‘ API Keys")
    provider = st.selectbox("Choose LLM Provider", ["Groq", "OpenAI", "HuggingFace"])
    groq_api_key = st.text_input("Groq API Key", type="password") if provider == "Groq" else None
    openai_api_key = st.text_input("OpenAI API Key", type="password") if provider == "OpenAI" else None
    hf_api_key = st.text_input("HuggingFace API Token", type="password") if provider == "HuggingFace" else None


# 🌐 URL Input
generic_url = st.text_input("Enter YouTube or Website URL", "")

# 🧠 Prompt Template
prompt_template = """

You are a helpful assistant. Please summarize the following content in no more than 300 words:



Content:

{text}

"""
prompt = PromptTemplate(template=prompt_template, input_variables=["text"])

# 🧠 LLM Selection
llm = None
if provider == "Groq" and groq_api_key:
    llm = ChatGroq(model="llama3-8b-8192", groq_api_key=groq_api_key)
elif provider == "OpenAI" and openai_api_key:
    llm = ChatOpenAI(model="gpt-3.5-turbo", api_key=openai_api_key)
elif provider == "HuggingFace" and hf_api_key:
    llm = HuggingFaceEndpoint(
        repo_id="mistralai/Mistral-7B-Instruct-v0.3",
        token=hf_api_key,
        task="text-generation",
        max_length=500,
        temperature=0.7
    )

# πŸ“Ό YouTube Transcript Fallback
@st.cache_data(show_spinner=False)
def get_youtube_transcript(url):
    parsed = urlparse(url)
    if "youtu.be" in parsed.netloc:
        video_id = parsed.path[1:]
    else:
        video_id = parse_qs(parsed.query).get("v", [None])[0]

    if not video_id:
        return None

    try:
        transcript = YouTubeTranscriptApi.get_transcript(video_id)
        return " ".join(entry["text"] for entry in transcript)
    except TranscriptsDisabled:
        # fallback using yt_dlp
        try:
            ydl_opts = {
                "quiet": True,
                "skip_download": True,
                "writesubtitles": True,
                "writeautomaticsub": True,
                "subtitlesformat": "vtt",
                "outtmpl": "%(id)s.%(ext)s"
            }
            with yt_dlp.YoutubeDL(ydl_opts) as ydl:
                info = ydl.extract_info(url, download=False)
                subtitles = info.get("subtitles") or info.get("automatic_captions")
                if subtitles and "en" in subtitles:
                    st.warning("πŸ“„ Subtitles available but direct download not implemented.")
                    return None
                else:
                    return None
        except Exception:
            return None


# πŸ“₯ Content Loader
def load_content(url):
    if "youtube.com" in url or "youtu.be" in url:
        transcript = get_youtube_transcript(url)
        if transcript:
            return [Document(page_content=transcript)]
        else:
            st.error("❌ Could not extract transcript from the YouTube video.")
            return []
    else:
        loader = UnstructuredURLLoader(
            urls=[url],
            ssl_verify=False,
            headers={"User-Agent": "Mozilla/5.0"}
        )
        return loader.load()

# πŸ“€ PDF Downloader
def generate_pdf(text):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_auto_page_break(auto=True, margin=15)
    pdf.set_font("Arial", size=12)
    for line in text.split("\n"):
        pdf.multi_cell(0, 10, line)
    pdf_path = "/tmp/summary.pdf"
    pdf.output(pdf_path)
    return pdf_path


# πŸ”˜ Main Logic
if st.button("✨ Summarize Now"):
    if not generic_url.strip():
        st.error("❌ Please enter a valid URL.")
    elif not validators.url(generic_url):
        st.error("⚠️ The entered text is not a valid URL.")
    elif not llm:
        st.error("⚠️ Please enter the correct API key for the selected provider.")
    else:
        try:
            with st.spinner("πŸ”„ Loading and summarizing..."):
                docs = load_content(generic_url)
                if not docs:
                    st.stop()

                trimmed_text = docs[0].page_content[:12000]
                st.info(f"πŸ“ Content length: {len(trimmed_text)} characters")

                with st.expander("πŸ“– Preview Fetched Content"):
                    st.write(trimmed_text[:1000] + "..." if len(trimmed_text) > 1000 else trimmed_text)

                chain = load_summarize_chain(llm, chain_type="stuff", prompt=prompt)
                summary = chain.run([Document(page_content=trimmed_text)])

                st.success("βœ… Summary Generated!")
                st.markdown(summary)

                # πŸ”½ PDF Download
                pdf_path = generate_pdf(summary)
                with open(pdf_path, "rb") as f:
                    st.download_button("πŸ“„ Download Summary as PDF", f, file_name="summary.pdf")

        except Exception as e:
            st.exception(f"❌ Summarization failed: {e}")