Spaces:
Sleeping
Sleeping
Commit
·
63c6811
1
Parent(s):
4cda85b
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
from unidecode import unidecode
|
5 |
+
import tensorflow as tf
|
6 |
+
import cloudpickle
|
7 |
+
from transformers import AlbertTokenizerFast
|
8 |
+
import os
|
9 |
+
|
10 |
+
def load_model():
|
11 |
+
interpreter = tf.lite.Interpreter(model_path=os.path.join("models/albert_sentiment_analysis.tflite"))
|
12 |
+
with open("models/sentiment_preprocessor_labelencoder.bin", "rb") as model_file_obj:
|
13 |
+
text_preprocessor, label_encoder = cloudpickle.load(model_file_obj)
|
14 |
+
|
15 |
+
model_checkpoint = "albert-base-v2"
|
16 |
+
tokenizer = AlbertTokenizerFast.from_pretrained(model_checkpoint)
|
17 |
+
return interpreter, text_preprocessor, label_encoder, tokenizer
|
18 |
+
|
19 |
+
interpreter, text_preprocessor, label_encoder, tokenizer = load_model()
|
20 |
+
|
21 |
+
def inference(text):
|
22 |
+
tflite_pred = "Can't Predict"
|
23 |
+
text = text_preprocessor.preprocess(pd.Series(text))[0]
|
24 |
+
if text != "this is an empty message":
|
25 |
+
tokens = tokenizer(text, max_length=150, padding="max_length", truncation=True, return_tensors="tf")
|
26 |
+
# tflite model inference
|
27 |
+
interpreter.allocate_tensors()
|
28 |
+
input_details = interpreter.get_input_details()
|
29 |
+
output_details = interpreter.get_output_details()[0]
|
30 |
+
attention_mask, input_ids = tokens['attention_mask'], tokens['input_ids']
|
31 |
+
interpreter.set_tensor(input_details[0]["index"], attention_mask)
|
32 |
+
interpreter.set_tensor(input_details[1]["index"], input_ids)
|
33 |
+
interpreter.invoke()
|
34 |
+
tflite_pred = interpreter.get_tensor(output_details["index"])[0]
|
35 |
+
tflite_pred_argmax = np.argmax(tflite_pred)
|
36 |
+
tflite_pred = f"{label_encoder.inverse_transform([tflite_pred_argmax])} ({tflite_pred[tflite_pred_argmax]})"
|
37 |
+
return tflite_pred
|
38 |
+
|
39 |
+
|
40 |
+
def main():
|
41 |
+
st.title("Sentiment Analysis App")
|
42 |
+
review = st.text_area("Enter Review:", "")
|
43 |
+
if st.button("Submit"):
|
44 |
+
# result = "Can't Predict"
|
45 |
+
# if len(review.strip()) > 0:
|
46 |
+
result = inference(review)
|
47 |
+
if result.find("positive") >=0 :
|
48 |
+
st.success(f"{result}")
|
49 |
+
else:
|
50 |
+
st.error(f"{result}")
|
51 |
+
|
52 |
+
if __name__ == "__main__":
|
53 |
+
main()
|