ksvmuralidhar commited on
Commit
63c6811
·
1 Parent(s): 4cda85b

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -0
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ from unidecode import unidecode
5
+ import tensorflow as tf
6
+ import cloudpickle
7
+ from transformers import AlbertTokenizerFast
8
+ import os
9
+
10
+ def load_model():
11
+ interpreter = tf.lite.Interpreter(model_path=os.path.join("models/albert_sentiment_analysis.tflite"))
12
+ with open("models/sentiment_preprocessor_labelencoder.bin", "rb") as model_file_obj:
13
+ text_preprocessor, label_encoder = cloudpickle.load(model_file_obj)
14
+
15
+ model_checkpoint = "albert-base-v2"
16
+ tokenizer = AlbertTokenizerFast.from_pretrained(model_checkpoint)
17
+ return interpreter, text_preprocessor, label_encoder, tokenizer
18
+
19
+ interpreter, text_preprocessor, label_encoder, tokenizer = load_model()
20
+
21
+ def inference(text):
22
+ tflite_pred = "Can't Predict"
23
+ text = text_preprocessor.preprocess(pd.Series(text))[0]
24
+ if text != "this is an empty message":
25
+ tokens = tokenizer(text, max_length=150, padding="max_length", truncation=True, return_tensors="tf")
26
+ # tflite model inference
27
+ interpreter.allocate_tensors()
28
+ input_details = interpreter.get_input_details()
29
+ output_details = interpreter.get_output_details()[0]
30
+ attention_mask, input_ids = tokens['attention_mask'], tokens['input_ids']
31
+ interpreter.set_tensor(input_details[0]["index"], attention_mask)
32
+ interpreter.set_tensor(input_details[1]["index"], input_ids)
33
+ interpreter.invoke()
34
+ tflite_pred = interpreter.get_tensor(output_details["index"])[0]
35
+ tflite_pred_argmax = np.argmax(tflite_pred)
36
+ tflite_pred = f"{label_encoder.inverse_transform([tflite_pred_argmax])} ({tflite_pred[tflite_pred_argmax]})"
37
+ return tflite_pred
38
+
39
+
40
+ def main():
41
+ st.title("Sentiment Analysis App")
42
+ review = st.text_area("Enter Review:", "")
43
+ if st.button("Submit"):
44
+ # result = "Can't Predict"
45
+ # if len(review.strip()) > 0:
46
+ result = inference(review)
47
+ if result.find("positive") >=0 :
48
+ st.success(f"{result}")
49
+ else:
50
+ st.error(f"{result}")
51
+
52
+ if __name__ == "__main__":
53
+ main()