File size: 11,438 Bytes
4721618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77f4a7d
 
 
 
7b36c5c
4721618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa315b4
 
4721618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684906e
 
 
 
 
 
 
4721618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5ebd4ab
 
4721618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import streamlit as st
import pandas as pd
import numpy as np
import seaborn as sns
import plotly.express as px
import matplotlib.pyplot as plt
from read_predictions_from_db import PredictionDBRead
from read_daily_metrics_from_db import MetricsDBRead
from sklearn.metrics import balanced_accuracy_score, accuracy_score
import logging
from config import (CLASSIFIER_ADJUSTMENT_THRESHOLD,
                    PERFORMANCE_THRESHOLD,
                    CLASSIFIER_THRESHOLD)

logging.basicConfig(format='%(asctime)s %(levelname)s: %(message)s', level=logging.INFO)


def filter_prediction_data(data: pd.DataFrame):
    try:
        logging.info("Entering filter_prediction_data()")
        if data is None:
            raise Exception("Input Prediction Data frame in None")   

        filtered_prediction_data = data.loc[(data['y_true_proba'] == 1) & (data['used_for_training'].astype("str").str.contains("_train")==False) & 
                                                                          (data['used_for_training'].astype("str").str.contains("_excluded")==False) & 
                                                                          (data['used_for_training'].astype("str").str.contains("_validation")==False) 
                                           ].copy()

        logging.info("Exiting filter_prediction_data()")
        return filtered_prediction_data
    except Exception as e:
        logging.critical(f"Error in filter_prediction_data(): {e}")
        return None


def get_adjusted_predictions(df):
    try:
        logging.info("Entering get_adjusted_predictions()")
        if df is None:
            raise Exception('Input Filtered Prediction Data Frame is None')
        df = df.copy()
        df.reset_index(drop=True, inplace=True)
        df.loc[df['y_pred_proba']<CLASSIFIER_ADJUSTMENT_THRESHOLD, 'y_pred'] = 'NATION'
        # df.loc[(df['text'].str.contains('Pakistan')) & (df['y_pred'] == 'NATION'), 'y_pred'] = 'WORLD'
        # df.loc[(df['text'].str.contains('Zodiac Sign', case=False)) | (df['text'].str.contains('Horoscope', case=False)), 'y_pred'] = 'SCIENCE'
        logging.info("Exiting get_adjusted_predictions()")
        return df
    except Exception as e:
        logging.info(f"Error in get_adjusted_predictions(): {e}")
        return None


def display_kpis(data: pd.DataFrame, adj_data: pd.DataFrame):
    try:
        logging.info("Entering display_kpis()")
        if data is None:
            raise Exception("Input Prediction Data frame in None")
        if adj_data is None:
            raise Exception('Input Adjusted Data frame is None')    
        
        n_samples = len(data)
        balanced_accuracy = np.round(balanced_accuracy_score(data['y_true'], data['y_pred']), 4)
        accuracy = np.round(accuracy_score(data['y_true'], data['y_pred']), 4)
            
        adj_balanced_accuracy = np.round(balanced_accuracy_score(adj_data['y_true'], adj_data['y_pred']), 4)
        adj_accuracy = np.round(accuracy_score(adj_data['y_true'], adj_data['y_pred']), 4)

        st.write('''<style>
                        [data-testid="column"] {
                        width: calc(33.3333% - 1rem) !important;
                        flex: 1 1 calc(33.3333% - 1rem) !important;
                        min-width: calc(33% - 1rem) !important;
                        }
                    </style>''', 
                 unsafe_allow_html=True)

        col1, col2= st.columns(2)
        with col1:
            metric1 = st.metric(label="Balanced Accuracy", value=balanced_accuracy)
        with col2:
            metric2 = st.metric(label="Adj Balanced Accuracy", value=adj_balanced_accuracy)
            
        col3, col4= st.columns(2)
        with col3:
            metric3 = st.metric(label="Accuracy", value=accuracy)
        with col4:
            metric4 = st.metric(label="Adj Accuracy", value=adj_accuracy)
    
        col5, col6= st.columns(2)
        with col5:
            metric5 = st.metric(label="Bal Accuracy Threshold", value=PERFORMANCE_THRESHOLD)
        with col6:
            metric6 = st.metric(label="N Samples", value=n_samples)
        logging.info("Exiting display_kpis()")
    except Exception as e:
        logging.critical(f'Error in display_kpis(): {e}')
        st.error("Couldn't display KPIs")


def plot_daily_metrics(metrics_df: pd.DataFrame):
    try:
        logging.info("Entering plot_daily_metrics()")
        st.write(" ")
        if metrics_df is None:
            raise Exception('Input Metrics Data Frame is None')
            
        metrics_df['evaluation_date'] = pd.to_datetime(metrics_df['evaluation_date'])
        metrics_df['mean_score_minus_std'] = np.round(metrics_df['mean_balanced_accuracy_score'] - metrics_df['std_balanced_accuracy_score'], 4)
        metrics_df['mean_score_plus_std'] = np.round(metrics_df['mean_balanced_accuracy_score'] + metrics_df['std_balanced_accuracy_score'], 4)
        
        hover_data={'mean_balanced_accuracy_score': True,
                    'std_balanced_accuracy_score': False, 
                    'mean_score_minus_std': True,
                    'mean_score_plus_std': True,
                    'evaluation_window_days': True,
                    'n_splits': True,
                    'sample_start_date': True,
                    'sample_end_date': True, 
                    'sample_size_of_each_split': True}
    
        hover_labels = {'mean_balanced_accuracy_score': "Mean Score",
                        'mean_score_minus_std': "Mean Score - Stdev",
                        'mean_score_plus_std': "Mean Score + Stdev",
                        'evaluation_window_days': "Observation Window (Days)",
                        'sample_start_date': "Observation Window Start Date",
                        'sample_end_date': "Observation Window End Date",
                        'n_splits': "N Splits For Evaluation",
                        'sample_size_of_each_split': "Sample Size of Each Split"}
        
        fig = px.line(data_frame=metrics_df, x='evaluation_date', 
                      y='mean_balanced_accuracy_score', 
                      error_y='std_balanced_accuracy_score', 
                      title="Daily Balanced Accuracy",
                      color_discrete_sequence=['black'],
                      hover_data=hover_data, labels=hover_labels, markers=True)
    
        fig.add_hline(y=PERFORMANCE_THRESHOLD, line_dash="dash", line_color="green", 
                      annotation_text=f"<b>THRESHOLD</b>",
                      annotation_position="left top")
        
        fig.update_layout(dragmode='pan')
        fig.update_layout(margin=dict(l=0, r=0, t=110, b=10))
        st.plotly_chart(fig, use_container_width=True)
        logging.info("Exiting plot_daily_metrics()")
    except Exception as e:
        logging.critical(f'Error in plot_daily_metrics(): {e}')
        st.error("Couldn't Plot Daily Model Metrics")


def get_misclassified_classes(data):
    try:
        logging.info("Entering get_misclassified_classes()")
        if data is None:
            raise Exception("Input Prediction Data Frame is None")
        
        data = data.copy()
        data['match'] = (data['y_true'] == data['y_pred']).astype('int')
        y_pred_counts = data['y_pred'].value_counts()
        
        misclassified_examples = data.loc[data['match'] == 0, ['text', 'y_true', 'y_pred', 'y_pred_proba', 'url']].copy()
        misclassified_examples.sort_values(by=['y_pred', 'y_pred_proba'], ascending=[True, False], inplace=True)
        
        misclassifications = data.loc[data['match'] == 0, 'y_pred'].value_counts()

        missing_classes = [i for i in y_pred_counts.index if i not in misclassifications.index]
        for i in missing_classes:
            misclassifications[i] = 0
        
        misclassifications = misclassifications[y_pred_counts.index].copy()
        misclassifications /= y_pred_counts
        misclassifications.sort_values(ascending=False, inplace=True)
        logging.info("Exiting get_misclassified_classes()")
        return np.round(misclassifications, 2), misclassified_examples
    except Exception as e:
        logging.critical(f'Error in get_misclassified_classes(): {e}')
        return None, None

    
def display_misclassified_examples(misclassified_classes, misclassified_examples):
    try:
        logging.info("Entering display_misclassified_examples()")
        st.write(" ")
        if misclassified_classes is None:
            raise Exception('Misclassified Classes Distribution Data Frame is None')
        if misclassified_examples is None:
            raise Exception('Misclassified Examples Data Frame is None')
        
        fig, ax = plt.subplots(figsize=(10, 4.5))
        misclassified_classes.plot(kind='bar', ax=ax, color='black', title="Misclassification percentage")
        plt.yticks([])
        plt.xlabel("")
        ax.bar_label(ax.containers[0]);
        st.pyplot(fig)
    
        st.markdown("<b>Misclassified examples</b>", unsafe_allow_html=True)    
        st.dataframe(misclassified_examples, hide_index=True)
        st.markdown(
                    """
                    <style>
                    [data-testid="stElementToolbar"] {
                        display: none;
                    }
                    </style>
                    """,
                    unsafe_allow_html=True
                )
        logging.info("Exiting display_misclassified_examples()")
    except Exception as e:
        logging.critical(f'Error in display_misclassified_examples(): {e}')
        st.error("Couldn't display Misclassification Data")


def classification_model_monitor():
    try:
        # st.write('<h4>Classification Model Monitor<span style="color: red;"> (out of service)</span></h4>', unsafe_allow_html=True)
        st.write('<h4>Classification Model Monitor</h4>', unsafe_allow_html=True)

        prediction_db = PredictionDBRead()
        metrics_db = MetricsDBRead()
        
        # Read Prediction Data From DB
        prediction_data = prediction_db.read_predictions_from_db()
        # Filter Prediction Data
        filtered_prediction_data = filter_prediction_data(prediction_data)
        # Get Adjusted Prediction Data
        adjusted_filtered_prediction_data = get_adjusted_predictions(filtered_prediction_data)
        # Display KPIs
        display_kpis(filtered_prediction_data, adjusted_filtered_prediction_data)
        
        # Read Daily Metrics From DB
        metrics_df = metrics_db.read_metrics_from_db()
        # Display daily Metrics Line Plot
        plot_daily_metrics(metrics_df)
        
        # Get misclassified class distribution and misclassified examples from Prediction Data
        misclassified_classes, misclassified_examples = get_misclassified_classes(filtered_prediction_data)
        # Display Misclassification Data
        display_misclassified_examples(misclassified_classes, misclassified_examples)

        st.markdown(
                    """<style>
                           [data-testid="stMetricValue"] {
                           font-size: 25px;
                          }
                       </style>
                    """, unsafe_allow_html=True
        )
        
    except Exception as e:
        logging.critical(f"Error in classification_model_monitor(): {e}")
        st.error("Unexpected Error. Couldn't display Classification Model Monitor")