Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import fitz # PyMuPDF
|
|
3 |
from gtts import gTTS
|
4 |
import tempfile
|
5 |
import os
|
6 |
-
|
7 |
|
8 |
# Streamlit page setup
|
9 |
st.set_page_config(page_title="Health Report Analyzer", page_icon="🩺")
|
@@ -20,10 +20,19 @@ def extract_text(file):
|
|
20 |
text += page.get_text()
|
21 |
return text
|
22 |
|
23 |
-
#
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Doctor recommendation logic
|
29 |
def suggest_doctor(term):
|
@@ -38,7 +47,7 @@ def suggest_doctor(term):
|
|
38 |
return "A **diabetologist** or **endocrinologist** is recommended for sugar level issues."
|
39 |
return "Please consult a **general physician** for further evaluation."
|
40 |
|
41 |
-
#
|
42 |
def get_reference_range(term):
|
43 |
term = term.lower()
|
44 |
if "hemoglobin" in term:
|
@@ -52,24 +61,21 @@ def get_reference_range(term):
|
|
52 |
# Main logic
|
53 |
if uploaded_file:
|
54 |
text_data = extract_text(uploaded_file)
|
55 |
-
st.success("Health Report Uploaded Successfully!")
|
56 |
|
57 |
# Display the report text
|
58 |
st.markdown("### 📄 Health Report Content")
|
59 |
st.write(text_data)
|
60 |
|
61 |
-
explainer = load_medical_explainer()
|
62 |
st.session_state['report_text'] = text_data
|
63 |
|
64 |
st.subheader("💬 Ask About Any Medical Term or Part of the Report")
|
65 |
|
66 |
-
user_question = st.text_input("Enter a medical term or question (e.g. 'CT scan', 'Explain creatinine'):")
|
67 |
|
68 |
if st.button("Get AI Explanation") and user_question:
|
69 |
with st.spinner("Thinking..."):
|
70 |
-
|
71 |
-
response = explainer(prompt, max_length=512)[0]['generated_text']
|
72 |
-
explanation = response
|
73 |
range_info = get_reference_range(user_question)
|
74 |
suggestion = suggest_doctor(user_question)
|
75 |
|
@@ -88,4 +94,4 @@ if uploaded_file:
|
|
88 |
st.audio(audio_file.read(), format='audio/mp3')
|
89 |
|
90 |
else:
|
91 |
-
st.info("Upload a PDF Health Report to begin.")
|
|
|
3 |
from gtts import gTTS
|
4 |
import tempfile
|
5 |
import os
|
6 |
+
import requests
|
7 |
|
8 |
# Streamlit page setup
|
9 |
st.set_page_config(page_title="Health Report Analyzer", page_icon="🩺")
|
|
|
20 |
text += page.get_text()
|
21 |
return text
|
22 |
|
23 |
+
# Ask medical question using Hugging Face Inference API (BioGPT)
|
24 |
+
API_URL = "https://api-inference.huggingface.co/models/microsoft/BioGPT-Large"
|
25 |
+
headers = {"Content-Type": "application/json"}
|
26 |
+
|
27 |
+
def ask_medical_question(question):
|
28 |
+
payload = {
|
29 |
+
"inputs": f"Explain this medical concept in detail for a general audience: {question}"
|
30 |
+
}
|
31 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
32 |
+
if response.status_code == 200:
|
33 |
+
return response.json()[0]['generated_text']
|
34 |
+
else:
|
35 |
+
return "⚠️ Sorry, something went wrong while contacting the medical AI."
|
36 |
|
37 |
# Doctor recommendation logic
|
38 |
def suggest_doctor(term):
|
|
|
47 |
return "A **diabetologist** or **endocrinologist** is recommended for sugar level issues."
|
48 |
return "Please consult a **general physician** for further evaluation."
|
49 |
|
50 |
+
# Basic reference ranges
|
51 |
def get_reference_range(term):
|
52 |
term = term.lower()
|
53 |
if "hemoglobin" in term:
|
|
|
61 |
# Main logic
|
62 |
if uploaded_file:
|
63 |
text_data = extract_text(uploaded_file)
|
64 |
+
st.success("✅ Health Report Uploaded Successfully!")
|
65 |
|
66 |
# Display the report text
|
67 |
st.markdown("### 📄 Health Report Content")
|
68 |
st.write(text_data)
|
69 |
|
|
|
70 |
st.session_state['report_text'] = text_data
|
71 |
|
72 |
st.subheader("💬 Ask About Any Medical Term or Part of the Report")
|
73 |
|
74 |
+
user_question = st.text_input("Enter a medical term or question (e.g. 'CT scan', 'Explain creatinine'):", key="question")
|
75 |
|
76 |
if st.button("Get AI Explanation") and user_question:
|
77 |
with st.spinner("Thinking..."):
|
78 |
+
explanation = ask_medical_question(user_question)
|
|
|
|
|
79 |
range_info = get_reference_range(user_question)
|
80 |
suggestion = suggest_doctor(user_question)
|
81 |
|
|
|
94 |
st.audio(audio_file.read(), format='audio/mp3')
|
95 |
|
96 |
else:
|
97 |
+
st.info("📂 Upload a PDF Health Report to begin.")
|