kseth9852 commited on
Commit
23863d5
·
verified ·
1 Parent(s): c236a08
Files changed (1) hide show
  1. app.py +7 -8
app.py CHANGED
@@ -3,6 +3,7 @@ import fitz # PyMuPDF
3
  from transformers import pipeline
4
  from datetime import datetime
5
 
 
6
  st.set_page_config(page_title="Health Report Analyzer", page_icon="🩺")
7
  st.title("🩺 Health Report Analyzer")
8
 
@@ -17,14 +18,14 @@ def extract_text(file):
17
  text += page.get_text()
18
  return text
19
 
20
- # Load Hugging Face Models
21
  @st.cache_resource
22
  def load_models():
23
  summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")
24
  explainer = pipeline("text2text-generation", model="google/flan-t5-base")
25
  return summarizer, explainer
26
 
27
- # MAIN LOGIC
28
  if uploaded_file:
29
  text_data = extract_text(uploaded_file)
30
  st.success("PDF Text Extracted Successfully!")
@@ -49,11 +50,12 @@ if uploaded_file:
49
  st.subheader("Explanation")
50
  st.write(explanation)
51
 
 
52
  st.session_state['summary'] = summary
53
  st.session_state['explanation'] = explanation
54
 
55
- # Chatbot Section
56
- st.subheader("AI Chatbot: Ask Anything About Your Report or Medical Terms")
57
 
58
  if 'summary' in st.session_state and 'explanation' in st.session_state:
59
  user_question = st.text_input("Ask a question (e.g. 'meaning of CT scan', 'explain cholecystectomy'):")
@@ -72,11 +74,8 @@ if uploaded_file:
72
 
73
  st.success("AI's Response:")
74
  st.write(response)
75
-
76
  else:
77
- st.info("Generate Summary & Explanation to activate chatbot.")
78
 
79
  else:
80
  st.info("Upload a PDF Health Report to begin.")
81
-
82
-
 
3
  from transformers import pipeline
4
  from datetime import datetime
5
 
6
+ # Streamlit page setup
7
  st.set_page_config(page_title="Health Report Analyzer", page_icon="🩺")
8
  st.title("🩺 Health Report Analyzer")
9
 
 
18
  text += page.get_text()
19
  return text
20
 
21
+ # Load models from HuggingFace
22
  @st.cache_resource
23
  def load_models():
24
  summarizer = pipeline("summarization", model="philschmid/bart-large-cnn-samsum")
25
  explainer = pipeline("text2text-generation", model="google/flan-t5-base")
26
  return summarizer, explainer
27
 
28
+ # Main logic
29
  if uploaded_file:
30
  text_data = extract_text(uploaded_file)
31
  st.success("PDF Text Extracted Successfully!")
 
50
  st.subheader("Explanation")
51
  st.write(explanation)
52
 
53
+ # Store in session
54
  st.session_state['summary'] = summary
55
  st.session_state['explanation'] = explanation
56
 
57
+ # AI Chatbot
58
+ st.subheader("💬 AI Chatbot: Ask Anything About Your Report or Medical Terms")
59
 
60
  if 'summary' in st.session_state and 'explanation' in st.session_state:
61
  user_question = st.text_input("Ask a question (e.g. 'meaning of CT scan', 'explain cholecystectomy'):")
 
74
 
75
  st.success("AI's Response:")
76
  st.write(response)
 
77
  else:
78
+ st.info("Please generate the summary and explanation first to enable the chatbot.")
79
 
80
  else:
81
  st.info("Upload a PDF Health Report to begin.")