Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -2,11 +2,12 @@ import gradio as gr
|
|
2 |
import pdfplumber
|
3 |
import re
|
4 |
from transformers import LayoutLMForTokenClassification, AutoTokenizer
|
|
|
5 |
|
6 |
# Wczytanie modelu LayoutLMv3
|
7 |
model_name = "kryman27/layoutlmv3-finetuned"
|
8 |
model = LayoutLMForTokenClassification.from_pretrained(model_name)
|
9 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name) #
|
10 |
|
11 |
# Regu艂y do wykrywania NIP, kwot, dat
|
12 |
nip_pattern = re.compile(r'\bPL\s?\d{10}\b|\b\d{10}\b')
|
@@ -16,37 +17,45 @@ payment_keywords = ["data p艂atno艣ci", "termin p艂atno艣ci", "zap艂ata", "p艂at
|
|
16 |
|
17 |
def extract_invoice_data(pdf_file):
|
18 |
with pdfplumber.open(pdf_file) as pdf:
|
19 |
-
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
# Predykcja modelu
|
26 |
-
|
|
|
27 |
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
28 |
|
29 |
# Przetwarzanie wynik贸w
|
30 |
entities = []
|
31 |
-
for token, pred in zip(words, predictions):
|
32 |
if pred > 0: # Pomijamy t艂o
|
33 |
entities.append((token, model.config.id2label[pred]))
|
34 |
|
35 |
# Wyszukiwanie kluczowych warto艣ci
|
36 |
seller_name = [token for token, label in entities if "ORG" in label]
|
37 |
-
seller_nip = nip_pattern.search(
|
38 |
-
kwoty = kwota_pattern.findall(
|
39 |
kwoty = [float(k.replace(",", ".")) for k in kwoty if k.replace(",", ".").replace(".", "").isdigit()]
|
40 |
total_amount = max(kwoty) if kwoty else None
|
41 |
|
42 |
# Szukamy daty p艂atno艣ci
|
43 |
payment_date = None
|
44 |
-
for
|
45 |
-
if any(keyword in
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
return {
|
52 |
"Sprzedawca": " ".join(seller_name) if seller_name else "Nie znaleziono",
|
|
|
2 |
import pdfplumber
|
3 |
import re
|
4 |
from transformers import LayoutLMForTokenClassification, AutoTokenizer
|
5 |
+
import torch
|
6 |
|
7 |
# Wczytanie modelu LayoutLMv3
|
8 |
model_name = "kryman27/layoutlmv3-finetuned"
|
9 |
model = LayoutLMForTokenClassification.from_pretrained(model_name)
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name) # Automatyczne wykrycie tokenizatora
|
11 |
|
12 |
# Regu艂y do wykrywania NIP, kwot, dat
|
13 |
nip_pattern = re.compile(r'\bPL\s?\d{10}\b|\b\d{10}\b')
|
|
|
17 |
|
18 |
def extract_invoice_data(pdf_file):
|
19 |
with pdfplumber.open(pdf_file) as pdf:
|
20 |
+
words, boxes = [], []
|
21 |
|
22 |
+
for page in pdf.pages:
|
23 |
+
extracted_words = page.extract_words()
|
24 |
+
for word in extracted_words:
|
25 |
+
words.append(word['text']) # Pobieramy tekst s艂owa
|
26 |
+
bbox = [word['x0'], word['top'], word['x1'], word['bottom']]
|
27 |
+
boxes.append(bbox) # Pobieramy bounding box (pozycj臋 s艂owa na stronie)
|
28 |
+
|
29 |
+
# Tokenizacja tekstu + dodanie bounding boxes
|
30 |
+
tokens = tokenizer(words, boxes=boxes, is_split_into_words=True, return_tensors="pt", truncation=True)
|
31 |
|
32 |
# Predykcja modelu
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(**tokens)
|
35 |
predictions = outputs.logits.argmax(-1).squeeze().tolist()
|
36 |
|
37 |
# Przetwarzanie wynik贸w
|
38 |
entities = []
|
39 |
+
for token, pred in zip(words, predictions):
|
40 |
if pred > 0: # Pomijamy t艂o
|
41 |
entities.append((token, model.config.id2label[pred]))
|
42 |
|
43 |
# Wyszukiwanie kluczowych warto艣ci
|
44 |
seller_name = [token for token, label in entities if "ORG" in label]
|
45 |
+
seller_nip = nip_pattern.search(" ".join(words))
|
46 |
+
kwoty = kwota_pattern.findall(" ".join(words))
|
47 |
kwoty = [float(k.replace(",", ".")) for k in kwoty if k.replace(",", ".").replace(".", "").isdigit()]
|
48 |
total_amount = max(kwoty) if kwoty else None
|
49 |
|
50 |
# Szukamy daty p艂atno艣ci
|
51 |
payment_date = None
|
52 |
+
for i, word in enumerate(words):
|
53 |
+
if any(keyword in word.lower() for keyword in payment_keywords):
|
54 |
+
if i + 1 < len(words):
|
55 |
+
date_match = data_pattern.search(words[i + 1])
|
56 |
+
if date_match:
|
57 |
+
payment_date = date_match.group()
|
58 |
+
break
|
59 |
|
60 |
return {
|
61 |
"Sprzedawca": " ".join(seller_name) if seller_name else "Nie znaleziono",
|