File size: 8,295 Bytes
aacdfd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
#!/usr/bin/env python3
"""
Unified invoice processing script that handles both PDF and Excel files.
"""

import os
import sys
# Add the project root directory to the Python path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
import json
import logging
from typing import Optional
from pathlib import Path
import argparse
import tempfile
from dotenv import load_dotenv

# Import document processing functions
from process.process_pdf_with_headers import process_pdf_with_headers
from process.process_excel import process_excel_file
from src.excel_to_pdf import excel_to_pdf, convert_xls_to_xlsx
from src.docx_to_pdf import docx_to_pdf
from src.txt_to_pdf import txt_to_pdf

# Load environment variables from .env file if it exists
load_dotenv()

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)

def setup_google_client():
    """Set up and return the Google Generative AI client."""
    try:
        from google import genai
        api_key = os.environ.get("GOOGLE_API_KEY")
        if not api_key:
            logger.warning("GOOGLE_API_KEY environment variable not set. PDF processing with LLM will not be available.")
            return None
        
        return genai.Client(api_key=api_key)
    except ImportError:
        logger.warning("google-generativeai package not installed. PDF processing with LLM will not be available.")
        return None
    except Exception as e:
        logger.error(f"Error setting up Google client: {str(e)}")
        return None

def save_to_json(invoice_data, input_file_path: str) -> str:
    """
    Save the invoice data to a JSON file in the 'result' directory.
    
    Args:
        invoice_data: The invoice data to save (can be a dictionary or an object)
        input_file_path: The path to the input file
        
    Returns:
        The path to the saved JSON file
    """
    # Create result directory if it doesn't exist
    result_dir = "result"
    os.makedirs(result_dir, exist_ok=True)
    
    # Get the base filename without extension
    base_filename = os.path.splitext(os.path.basename(input_file_path))[0]
    
    # Create the output JSON file path
    output_file_path = os.path.join(result_dir, f"{base_filename}.json")
    
    # Convert invoice data to JSON-serializable format
    # Check if invoice_data is a dictionary or an object
    if isinstance(invoice_data, dict):
        # It's already a dictionary, just ensure items are serializable
        json_data = invoice_data
    else:
        # It's an object, convert to dictionary
        json_data = {
            "headers": invoice_data.headers if hasattr(invoice_data, 'headers') else [],
            "items": [item.model_dump() if hasattr(item, 'model_dump') else item.dict() 
                     for item in invoice_data.items]
        }
    
    # Write to JSON file
    with open(output_file_path, 'w', encoding='utf-8') as f:
        json.dump(json_data, f, indent=2, ensure_ascii=False)
    
    logger.info(f"Saved invoice data to {output_file_path}")
    return output_file_path

def process_file(file_path: str) -> None:
    """
    Process an invoice file (PDF, Excel, or Document) and print the extracted data.
    
    Args:
        file_path: Path to the invoice file
    """
    file_path = os.path.abspath(file_path)
    if not os.path.exists(file_path):
        logger.error(f"File not found: {file_path}")
        return
    
    file_ext = os.path.splitext(file_path)[1].lower()
    
    llm_client = setup_google_client()

    temp_pdf_path = tempfile.NamedTemporaryFile(delete=False, suffix='.pdf').name

    
    if file_ext in ['.xlsx', '.xls']:
        # Process Excel file
        # For .xls files, convert to .xlsx format first
        if file_ext == '.xls':
            xlsx_path = convert_xls_to_xlsx(file_path)
            file_path = xlsx_path
        
        # Create output JSON path
        output_json_path = os.path.join("result", f"{os.path.splitext(os.path.basename(file_path))[0]}.json")
        
        result = process_excel_file(
            file_path=file_path,
            output_path=output_json_path,
            chunk_size=20,
            max_workers=2
        )
        
        # Create the expected invoice_data format
        invoice_data = {
            "headers": ["Product Name", "Batch Number", "Expiry Date", "MRP", "Quantity"],
            "items": result["items"]
        }

                                      
    elif file_ext == '.pdf':
    
        try:
            logger.info(f"Processing PDF file with header context: {file_path}")
            
            # Process the PDF using process_pdf_with_headers
            invoice_data_obj = process_pdf_with_headers(file_path)
            
            # Convert the InvoiceData object to the format expected by the rest of the code
            invoice_data = {
                "headers": invoice_data_obj.headers,
                "items": [item.model_dump() if hasattr(item, 'model_dump') else item.dict() for item in invoice_data_obj.items]
            }
            
        except Exception as e:
            logger.error(f"Error processing PDF with headers: {str(e)}")
                
    elif file_ext in ['.doc', '.docx', '.txt']:
        # Process Document file by first converting to PDF
        # Ensure the required modules are imported
        if file_ext == '.txt':
            temp_pdf_path = txt_to_pdf(file_path, temp_pdf_path)
            logger.info(f"Converted text file to PDF: {temp_pdf_path}")
        elif file_ext in ['.doc', '.docx']:
            temp_pdf_path = docx_to_pdf(file_path, temp_pdf_path)
            logger.info(f"Converted document file to PDF: {temp_pdf_path}")
        
        invoice_data_obj = process_pdf_with_headers(temp_pdf_path)
        
        # Convert the InvoiceData object to the format expected by the rest of the code
        invoice_data = {
            "headers": invoice_data_obj.headers,
            "items": [item.model_dump() if hasattr(item, 'model_dump') else item.dict() for item in invoice_data_obj.items]
        }
        
    else:
        logger.error(f"Unsupported file format: {file_ext}")
        logger.error("Supported formats: .pdf, .xlsx, .xls, .doc, .docx, .txt")
        return
    
    json_path = save_to_json(invoice_data, file_path)
    print(f"Results saved to: {json_path}")
    
    # Print results
    if isinstance(invoice_data, dict):
        # It's a dictionary
        items_count = len(invoice_data.get('items', []))
        items = invoice_data.get('items', [])
        print(f"\nExtracted {items_count} items from {file_path}:")
        for i, item in enumerate(items, 1):
            print(f"\nItem {i}:")
            print(f"  Product: {item.get('product_name', 'N/A')}")
            print(f"  Batch Number: {item.get('batch_number', 'N/A')}")
            print(f"  Expiry: {item.get('expiry_date', 'N/A')}")
            print(f"  MRP: {item.get('mrp', 'N/A')}")
            print(f"  Quantity: {item.get('quantity', 'N/A')}")
    else:
        # It's an object (likely a Pydantic model)
        items_count = len(invoice_data.items) if hasattr(invoice_data, 'items') else 0
        print(f"\nExtracted {items_count} items from {file_path}:")
        for i, item in enumerate(invoice_data.items if hasattr(invoice_data, 'items') else [], 1):
            print(f"\nItem {i}:")
            print(f"  Product: {getattr(item, 'product_name', 'N/A')}")
            print(f"  Batch Number: {getattr(item, 'batch_number', 'N/A')}")
            print(f"  Expiry: {getattr(item, 'expiry_date', 'N/A')}")
            print(f"  MRP: {getattr(item, 'mrp', 'N/A')}")
            print(f"  Quantity: {getattr(item, 'quantity', 'N/A')}")
    return json_path

def main():
    """Main function to parse arguments and process files."""
    parser = argparse.ArgumentParser(description="Process invoice files (PDF, Excel, XLS)")
    parser.add_argument("--file_path", help="Path to the invoice file")
    
    args = parser.parse_args()
    
    try:
        process_file(args.file_path)
    except Exception as e:
        logger.error(f"Error processing file: {str(e)}")
        sys.exit(1)

if __name__ == "__main__":
    main()