File size: 8,083 Bytes
aacdfd5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
from google import genai
from pydantic import BaseModel, Field
from typing import List, Optional, Dict, Tuple
import pdf2image
import os
from pathlib import Path
import concurrent.futures
from dataclasses import dataclass
from functools import partial
import logging
from PIL import Image
from dotenv import load_dotenv


load_dotenv()


class InvoiceItem(BaseModel):
    """Represents a single item in an invoice."""
    product_name: str = Field(description="The name of the product")
    batch_number: str = Field(description="The batch number of the product")
    expiry_date: str = Field(description="The expiry date (format: MM/YY)")
    mrp: str = Field(description="Maximum Retail Price")
    quantity: int = Field(description="Product quantity")

class InvoiceData(BaseModel):
    """Represents the complete invoice data including headers."""
    headers: List[str] = Field(
        description="Column headers from the invoice table",
        default_factory=list
    )
    items: List[InvoiceItem] = Field(
        description="List of extracted invoice items",
        default_factory=list
    )

class HeaderExtraction(BaseModel):
    """Model for extracting headers separately."""
    headers: List[str] = Field(
        description="The column headers found in the invoice table"
    )

@dataclass
class PageData:
    """Container for page processing data."""
    idx: int
    image_path: str
    headers: List[str]
    items: List[InvoiceItem]

def extract_headers(client: genai.Client, image_path: str, model_id: str) -> List[str]:
    """
    Extract column headers from the first page of the invoice.
    
    Args:
        client: The Gemini API client
        image_path: Path to the image file
        model_id: The model ID to use for extraction
    
    Returns:
        List of column headers
    """
    header_prompt = """
    Extract only the column headers from this invoice table.
    Return them exactly as they appear, maintaining their order from left to right.
    Only extract the headers, not any data from the rows.
    """
    
    image_file = client.files.upload(
        file=image_path, 
        config={'display_name': 'invoice_header_page'}
    )

    response = client.models.generate_content(
        model=model_id,
        contents=[header_prompt, image_file],
        config={
            'response_mime_type': 'application/json',
            'response_schema': HeaderExtraction
        }
    )
    
    return response.parsed.headers if response.parsed else []

def setup_client() -> genai.Client:
    """Create and return a Gemini API client."""
    return genai.Client(api_key=os.getenv("GEMINI_API_KEY"))

def save_image(image: Image, temp_dir: Path, idx: int) -> str:
    """
    Save a single page image to disk.
    
    Args:
        image: The PDF page image (PIL Image)
        temp_dir: Directory to save the image
        idx: Page index
    
    Returns:
        Path to the saved image
    """
    image_path = str(temp_dir / f"page_{idx+1}.jpg")
    image.save(image_path, "JPEG")
    return image_path

def process_single_page(
    page_data: Tuple[int, Image.Image, Path, List[str], genai.Client, str]
) -> PageData:
    """
    Process a single page of the PDF.
    
    Args:
        page_data: Tuple containing (page_index, page_image, temp_dir, headers, client, model_id)
    
    Returns:
        PageData object containing extracted information
    """
    idx, image, temp_dir, headers, client, model_id = page_data
    
    # Save image
    image_path = save_image(image, temp_dir, idx)
    
    # First page: extract headers
    if idx == 0:
        headers = extract_headers(client, image_path, model_id)
        prompt = """
        Extract product details from this invoice table.
        Use the exact column headers you see in the table.
        """
    else:
        headers_str = ", ".join(headers)
        prompt = f"""
        Extract product details from this invoice table.
        This is page {idx + 1} of the same invoice.
        Use these column headers: {headers_str}
        Ensure the extracted data aligns with these columns in order.
        """
    
    # Process image
    image_file = client.files.upload(
        file=image_path,
        config={'display_name': f'invoice_page_{idx+1}'}
    )

    response = client.models.generate_content(
        model=model_id,
        contents=[prompt, image_file],
        config={
            'response_mime_type': 'application/json',
            'response_schema': InvoiceData
        }
    )
    
    items = response.parsed.items if response.parsed and response.parsed.items else []
    return PageData(idx=idx, image_path=image_path, headers=headers, items=items)

def process_pdf_with_headers(pdf_path: str, max_workers: int = 3) -> InvoiceData:
    """
    Process a PDF invoice while preserving column header context using parallel processing.
    
    Args:
        pdf_path: Path to the PDF file
        max_workers: Maximum number of concurrent workers
    
    Returns:
        InvoiceData object containing headers and extracted items
    """
    # Convert PDF pages to images
    images = pdf2image.convert_from_path(pdf_path)
    
    # Create temp directory
    temp_dir = Path("content/temp")
    temp_dir.mkdir(parents=True, exist_ok=True)
    
    # Initialize shared resources
    client = setup_client()
    model_id = "gemini-2.0-flash"
    headers: List[str] = []
    
    # Prepare data for parallel processing
    page_data = []
    
    try:
        # Process first page separately to get headers
        first_page = process_single_page((0, images[0], temp_dir, headers, client, model_id))
        headers = first_page.headers
        all_items = first_page.items
        
        # Prepare remaining pages for parallel processing
        remaining_pages = [
            (i, img, temp_dir, headers, client, model_id)
            for i, img in enumerate(images[1:], start=1)
        ]
        
        # Process remaining pages in parallel
        with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
            future_to_page = {
                executor.submit(process_single_page, page): page[0]
                for page in remaining_pages
            }
            
            # Collect results as they complete
            for future in concurrent.futures.as_completed(future_to_page):
                page_idx = future_to_page[future]
                try:
                    page_result = future.result()
                    all_items.extend(page_result.items)
                except Exception as e:
                    logging.error(f"Error processing page {page_idx}: {str(e)}")
    
    finally:
        # Cleanup temporary files
        for file in temp_dir.glob("*.jpg"):
            try:
                file.unlink()
            except Exception as e:
                logging.warning(f"Failed to delete temporary file {file}: {str(e)}")
    
    return InvoiceData(headers=headers, items=all_items)

def main():
    """Main function to demonstrate usage."""
    # Configure logging
    logging.basicConfig(
        level=logging.INFO,
        format='%(asctime)s - %(levelname)s - %(message)s'
    )
    
    try:
        invoice_data = process_pdf_with_headers(
            "/Users/krishnaadithya/Desktop/dev/invoice_processing_2.0/pdf_only/expiry_invoice/DR REDDYS PE 1194.pdf",
            max_workers=3  # Adjust based on your system and API limits
        )
        
        # Print headers
        print("Column Headers:", ", ".join(invoice_data.headers))
        print("\nExtracted Items:")
        
        # Print results
        for item in invoice_data.items:
            print(f"Product: {item.product_name}")
            print(f"Batch: {item.batch_number}")
            print(f"Expiry: {item.expiry_date}")
            print(f"MRP: {item.mrp}")
            print(f"Quantity: {item.quantity}")
            print("-" * 50)
            
    except Exception as e:
        logging.error(f"Error processing invoice: {str(e)}")

if __name__ == "__main__":
    main()