File size: 8,284 Bytes
06555b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
Functionality to convert tabular data in Frictionless Data Packages to CSVW.

We translate [table schemas](https://specs.frictionlessdata.io/table-schema/) defined
for [data resources](https://specs.frictionlessdata.io/data-resource/) in a
[data package](https://specs.frictionlessdata.io/data-package/) to a CVSW TableGroup.

This functionality can be used together with the `frictionless describe` command to add
CSVW metadata to "raw" CSV tables.
"""
import json
import pathlib


def convert_column_spec(spec):
    """
    https://specs.frictionlessdata.io/table-schema/#field-descriptors

    :param spec:
    :return:
    """
    typemap = {
        'year': 'gYear',
        'yearmonth': 'gYearMonth',
    }

    titles = [t for t in [spec.get('title')] if t]

    res = {'name': spec['name'], 'datatype': {'base': 'string'}}
    if 'type' in spec:
        if spec['type'] == 'string' and spec.get('format') == 'binary':
            res['datatype']['base'] = 'binary'
        elif spec['type'] == 'string' and spec.get('format') == 'uri':
            res['datatype']['base'] = 'anyURI'
        elif spec['type'] in typemap:
            res['datatype']['base'] = typemap[spec['type']]
        elif spec['type'] in [
            'string', 'number', 'integer', 'boolean', 'date', 'time', 'datetime', 'duration',
        ]:
            res['datatype']['base'] = spec['type']
            if spec['type'] == 'string' and spec.get('format'):
                res['datatype']['dc:format'] = spec['format']
            if spec['type'] == 'boolean' and spec.get('trueValues') and spec.get('falseValues'):
                res['datatype']['format'] = '{}|{}'.format(
                    spec['trueValues'][0], spec['falseValues'][0])
            if spec['type'] in ['number', 'integer']:
                if spec.get('bareNumber') is True:  # pragma: no cover
                    raise NotImplementedError(
                        'bareNumber is not supported in CSVW. It may be possible to translate to '
                        'a number pattern, though. See '
                        'https://www.w3.org/TR/2015/REC-tabular-data-model-20151217/'
                        '#formats-for-numeric-types')
                if any(prop in spec for prop in ['decimalChar', 'groupChar']):
                    res['datatype']['format'] = {}
                    for p in ['decimalChar', 'groupChar']:
                        if spec.get(p):
                            res['datatype']['format'][p] = spec[p]
        elif spec['type'] in ['object', 'array']:
            res['datatype']['base'] = 'json'
            res['datatype']['dc:format'] = 'application/json'
        elif spec['type'] == 'geojson':
            res['datatype']['base'] = 'json'
            res['datatype']['dc:format'] = 'application/geo+json'

    if titles:
        res['titles'] = titles
    if 'description' in spec:
        res['dc:description'] = [spec['description']]
    if 'rdfType' in spec:
        res['propertyUrl'] = spec['rdfType']

    constraints = spec.get('constraints', {})
    for prop in ['required', 'minLength', 'maxLength', 'minimum', 'maximum']:
        if prop in constraints:
            res['datatype'][prop] = constraints[prop]
        if ('pattern' in constraints) and ('format' not in res['datatype']):
            res['datatype']['format'] = constraints['pattern']
        # FIXME: we could transform the "enum" constraint for string into
        # a regular expression in the "format" property.
    return res


def convert_foreignKey(rsc_name, fk, resource_map):
    """
    https://specs.frictionlessdata.io/table-schema/#foreign-keys
    """
    # Rename "fields" to "columnReference" and map resource name to url (resolving self-referential
    # foreign keys).
    return dict(
        columnReference=fk['fields'],
        reference=dict(
            columnReference=fk['reference']['fields'],
            resource=resource_map[fk['reference']['resource'] or rsc_name],
        )
    )


def convert_table_schema(rsc_name, schema, resource_map):
    """
    :param rsc_name: `name` property of the resource the schema belongs to. Needed to resolve \
    self-referential foreign keys.
    :param schema: `dict` parsed from JSON representing a frictionless Table Schema object.
    :param resource_map: `dict` mapping resource names to resource paths, needed to convert foreign\
    key constraints.
    :return: `dict` suitable for instantiating a `csvw.metadata.Schema` object.
    """
    res = dict(
        columns=[convert_column_spec(f) for f in schema['fields']],
    )
    for prop in [
        ('missingValues', 'null'),
        'primaryKey',
        'foreignKeys',
    ]:
        if isinstance(prop, tuple):
            prop, toprop = prop
        else:
            toprop = prop
        if prop in schema:
            res[toprop] = schema[prop]
            if prop == 'foreignKeys':
                res[toprop] = [convert_foreignKey(rsc_name, fk, resource_map) for fk in res[toprop]]
    return res


def convert_dialect(rsc):
    """
    Limitations: lineTerminator is not supported.

    https://specs.frictionlessdata.io/csv-dialect/
    """
    d = rsc.get('dialect', {})
    # Work around https://github.com/frictionlessdata/frictionless-py/issues/1506
    if 'csv' in d:
        d = d['csv']
    res = {}
    if d.get('delimiter'):
        res['delimiter'] = d['delimiter']
    if rsc.get('encoding'):
        res['encoding'] = rsc['encoding']
    for prop in [
        'delimiter',
        'quoteChar',
        'doubleQuote',
        'skipInitialSpace',
        'header',
    ]:
        if prop in d:
            res[prop] = d[prop]
    if 'commentChar' in d:
        res['commentPrefix'] = d['commentChar']
    return res


class DataPackage:
    def __init__(self, spec, directory=None):
        if isinstance(spec, DataPackage):
            self.json = spec.json
            self.dir = spec.dir
            return
        if isinstance(spec, dict):
            # already a parsed JSON object
            self.dir = pathlib.Path(directory or '.')
        elif isinstance(spec, pathlib.Path):
            self.dir = directory or spec.parent
            spec = json.loads(spec.read_text(encoding='utf8'))
        else:  # assume a JSON formatted string
            spec = json.loads(spec)
            self.dir = pathlib.Path(directory or '.')

        self.json = spec

    def to_tablegroup(self, cls=None):
        from csvw import TableGroup

        md = {'@context': "http://www.w3.org/ns/csvw"}
        # Package metadata:
        md['dc:replaces'] = json.dumps(self.json)

        # version,
        # image,

        for flprop, csvwprop in [
            ('id', 'dc:identifier'),
            ('licenses', 'dc:license'),
            ('title', 'dc:title'),
            ('homepage', 'dcat:accessURL'),
            ('description', 'dc:description'),
            ('sources', 'dc:source'),
            ('contributors', 'dc:contributor'),
            ('profile', 'dc:conformsTo'),
            ('keywords', 'dc:subject'),
            ('created', 'dc:created'),
        ]:
            if flprop in self.json:
                md[csvwprop] = self.json[flprop]

        if 'name' in self.json:
            if 'id' not in self.json:
                md['dc:identifier'] = self.json['name']
            elif 'title' not in self.json:
                md['dc:title'] = self.json['name']

        # Data Resource metadata:
        resources = [rsc for rsc in self.json.get('resources', []) if 'path' in rsc]
        resource_map = {rsc['name']: rsc['path'] for rsc in resources if 'name' in rsc}
        for rsc in resources:
            schema = rsc.get('schema')
            if schema and \
                    rsc.get('scheme') == 'file' and \
                    rsc.get('format') == 'csv':
                # Table Schema:
                md.setdefault('tables', [])
                table = dict(
                    url=rsc['path'],
                    tableSchema=convert_table_schema(rsc.get('name'), schema, resource_map),
                    dialect=convert_dialect(rsc),
                )
                md['tables'].append(table)

        cls = cls or TableGroup
        res = cls.fromvalue(md)
        res._fname = self.dir / 'csvw-metadata.json'
        return res