File size: 5,622 Bytes
06555b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import sys
import json
import shutil
import pathlib
import argparse
import subprocess

from colorama import init, Fore, Style

from csvw import CSVW, TableGroup
from csvw.db import Database
from csvw.utils import metadata2markdown


def parsed_args(desc, args, *argspecs):
    if args is None:  # pragma: no cover
        parser = argparse.ArgumentParser(description=desc)
        for kw, kwargs in argspecs:
            parser.add_argument(*kw, **kwargs)
        return parser.parse_args()
    return args


def exit(ret, test=False):
    if test:
        return ret
    sys.exit(ret)  # pragma: no cover


def csvwdescribe(args=None, test=False):
    frictionless = shutil.which('frictionless')
    if not frictionless:  # pragma: no cover
        raise ValueError('The frictionless command must be installed for this functionality!\n'
                         'Run `pip install frictionless` and try again.')

    args = parsed_args(
        "Describe a (set of) CSV file(s) with basic CSVW metadata.",
        args,
        (['--delimiter'], dict(default=None)),
        (['csv'], dict(nargs='+', help="CSV files to describe as CSVW TableGroup")),
    )
    fargs = ['describe', '--json']
    if args.delimiter:
        fargs.extend(['--dialect', '{"delimiter": "%s"}' % args.delimiter])
    onefile = False
    if len(args.csv) == 1 and '*' not in args.csv[0]:
        onefile = True
        # Make sure we infer a tabular-data schema even if the file suffix does not suggest a CSV
        # file.
        fargs.extend(['--format', 'csv'])
    else:
        fargs.extend(['--type', 'package'])

    dp = json.loads(subprocess.check_output([frictionless] + fargs + args.csv))
    if onefile:
        dp = dict(resources=[dp], profile='data-package')

    tg = TableGroup.from_frictionless_datapackage(dp)
    print(json.dumps(tg.asdict(), indent=4))
    return exit(0, test=test)


def csvwvalidate(args=None, test=False):
    init()
    args = parsed_args(
        "Validate a (set of) CSV file(s) described by CSVW metadata.",
        args,
        (['url'], dict(help='URL or local path to CSV or JSON metadata file.')),
        (['-v', '--verbose'], dict(action='store_true', default=False)),
    )
    ret = 0
    try:
        csvw = CSVW(args.url, validate=True)
        if csvw.is_valid:
            print(Style.BRIGHT + Fore.GREEN + 'OK')
        else:
            ret = 1
            print(Style.BRIGHT + Fore.RED + 'FAIL')
            if args.verbose:
                for w in csvw.warnings:
                    print(Style.DIM + str(w.message))
    except ValueError as e:
        ret = 2
        print(Style.BRIGHT + Fore.RED + 'FAIL')
        if args.verbose:
            print(Style.DIM + Fore.BLUE + str(e))
    return exit(ret, test=test)


def csvw2datasette(args=None, test=False):
    args = parsed_args(
        "Convert CSVW to data for datasette (https://datasette.io/).",
        args,
        (['url'], dict(help='URL or local path to CSV or JSON metadata file.')),
        (['-o', '--outdir'], dict(type=pathlib.Path, default=pathlib.Path('.'))),
    )
    dbname, mdname = 'datasette.db', 'datasette-metadata.json'
    csvw = CSVW(args.url)
    db = Database(csvw.tablegroup, fname=args.outdir / dbname)
    db.write_from_tg()
    md = {}
    for k in ['title', 'description', 'license']:
        if 'dc:{}'.format(k) in csvw.common_props:
            md[k] = csvw.common_props['dc:{}'.format(k)]
    # FIXME: flesh out, see https://docs.datasette.io/en/stable/metadata.html
    args.outdir.joinpath(mdname).write_text(json.dumps(md, indent=4))
    print("""Run
    datasette {} --metadata {}
and open your browser at
    http://localhost:8001/
to browse the data.
""".format(args.outdir / dbname, args.outdir / mdname))
    return exit(0, test=test)


def csvw2json(args=None, test=False):
    args = parsed_args(
        "Convert CSVW to JSON, see https://w3c.github.io/csvw/csv2json/",
        args,
        (['url'], dict(help='URL or local path to CSV or JSON metadata file.')),
    )
    csvw = CSVW(args.url)
    print(json.dumps(csvw.to_json(), indent=4))
    return exit(0, test=test)


def csvw2sqlite(args=None, test=False):  # pragma: no cover
    args = parsed_args(
        "Convert CSVW to JSON, see https://w3c.github.io/csvw/csv2json/",
        args,
        (
            ['url'],
            dict(help='URL or local path to CSVW metadata file describing a TableGroup.\n\n'
                      'Note that not all valid CSVW datasets can be converted to SQLite. One '
                      'limitation is that all tables which are referenced by foreign keys must '
                      'have a primary key.')),
        (
            ['output'],
            dict(help='Path for the generated SQLite database file.')),
    )
    tg = TableGroup.from_file(args.url)
    db = Database(tg, args.output)
    db.write_from_tg(_force=True)
    return exit(0, test=test)


def csvw2markdown(args=None, test=False):
    args = parsed_args(
        "Convert CSVW to JSON, see https://w3c.github.io/csvw/csv2json/",
        args,
        (
            ['url'],
            dict(help='URL or local path to CSVW metadata file describing a TableGroup.\n\n'
                      'Note that not all valid CSVW datasets can be converted to SQLite. One '
                      'limitation is that all tables which are referenced by foreign keys must '
                      'have a primary key.')),
    )
    tg = TableGroup.from_file(args.url)
    print(metadata2markdown(tg, link_files=True))
    return exit(0, test=test)


if __name__ == '__main__':  # pragma: no cover
    csvw2json()