File size: 21,258 Bytes
06555b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
import math
from enum import Enum
from typing import Dict, List, Optional, Tuple

from aiortc.utils import uint32_add, uint32_gt

BURST_DELTA_THRESHOLD_MS = 5

# overuse detector
MAX_ADAPT_OFFSET_MS = 15
MIN_NUM_DELTAS = 60

# overuse estimator
DELTA_COUNTER_MAX = 1000
MIN_FRAME_PERIOD_HISTORY_LENGTH = 60

# abs-send-time estimator
INTER_ARRIVAL_SHIFT = 26
TIMESTAMP_GROUP_LENGTH_MS = 5
TIMESTAMP_TO_MS = 1000.0 / (1 << INTER_ARRIVAL_SHIFT)


class BandwidthUsage(Enum):
    NORMAL = 0
    UNDERUSING = 1
    OVERUSING = 2


class RateControlState(Enum):
    HOLD = 0
    INCREASE = 1
    DECREASE = 2


class AimdRateControl:
    def __init__(self) -> None:
        self.avg_max_bitrate_kbps = None
        self.var_max_bitrate_kbps = 0.4
        self.current_bitrate = 30000000
        self.current_bitrate_initialized = False
        self.first_estimated_throughput_time: Optional[int] = None
        self.last_change_ms: Optional[int] = None
        self.near_max = False
        self.latest_estimated_throughput = 30000000
        self.rtt = 200
        self.state = RateControlState.HOLD

    def feedback_interval(self) -> int:
        return 500

    def set_estimate(self, bitrate: int, now_ms: int) -> None:
        """

        For testing purposes.

        """
        self.current_bitrate = self._clamp_bitrate(bitrate, bitrate)
        self.current_bitrate_initialized = True
        self.last_change_ms = now_ms

    def update(

        self,

        bandwidth_usage: BandwidthUsage,

        estimated_throughput: Optional[int],

        now_ms: int,

    ) -> Optional[int]:
        if not self.current_bitrate_initialized and estimated_throughput is not None:
            if self.first_estimated_throughput_time is None:
                self.first_estimated_throughput_time = now_ms
            elif now_ms - self.first_estimated_throughput_time > 3000:
                self.current_bitrate = estimated_throughput
                self.current_bitrate_initialized = True

        # wait for initialisation or overuse
        if (
            not self.current_bitrate_initialized
            and bandwidth_usage != BandwidthUsage.OVERUSING
        ):
            return None

        # update state
        if (
            bandwidth_usage == BandwidthUsage.NORMAL
            and self.state == RateControlState.HOLD
        ):
            self.last_change_ms = now_ms
            self.state = RateControlState.INCREASE
        elif bandwidth_usage == BandwidthUsage.OVERUSING:
            self.state = RateControlState.DECREASE
        elif bandwidth_usage == BandwidthUsage.UNDERUSING:
            self.state = RateControlState.HOLD

        # helper variables
        new_bitrate = self.current_bitrate
        if estimated_throughput is not None:
            self.latest_estimated_throughput = estimated_throughput
        else:
            estimated_throughput = self.latest_estimated_throughput
        estimated_throughput_kbps = estimated_throughput / 1000

        # update bitrate
        if self.state == RateControlState.INCREASE:
            # if the estimated throughput increases significantly,
            # clear estimated max throughput
            if self.avg_max_bitrate_kbps is not None:
                sigma_kbps = math.sqrt(
                    self.var_max_bitrate_kbps * self.avg_max_bitrate_kbps
                )
                if (
                    estimated_throughput_kbps
                    >= self.avg_max_bitrate_kbps + 3 * sigma_kbps
                ):
                    self.near_max = False
                    self.avg_max_bitrate_kbps = None

            # we use additive or multiplicative rate increase depending on whether
            # we are close to the maximum throughput
            if self.near_max:
                new_bitrate += self._additive_rate_increase(self.last_change_ms, now_ms)
            else:
                new_bitrate += self._multiplicative_rate_increase(
                    new_bitrate, self.last_change_ms, now_ms
                )
            self.last_change_ms = now_ms
        elif self.state == RateControlState.DECREASE:
            # if the estimated throughput drops significantly,
            # clear estimated max throughput
            if self.avg_max_bitrate_kbps is not None:
                sigma_kbps = math.sqrt(
                    self.var_max_bitrate_kbps * self.avg_max_bitrate_kbps
                )
                if (
                    estimated_throughput_kbps
                    < self.avg_max_bitrate_kbps - 3 * sigma_kbps
                ):
                    self.avg_max_bitrate_kbps = None
            self._update_max_throughput_estimate(estimated_throughput_kbps)

            self.near_max = True
            new_bitrate = round(0.85 * estimated_throughput)
            self.last_change_ms = now_ms
            self.state = RateControlState.HOLD

        self.current_bitrate = self._clamp_bitrate(new_bitrate, estimated_throughput)
        return self.current_bitrate

    def _additive_rate_increase(self, last_ms: int, now_ms: int) -> int:
        return int((now_ms - last_ms) * self._near_max_rate_increase() / 1000)

    def _clamp_bitrate(self, new_bitrate: int, estimated_throughput: int) -> int:
        max_bitrate = max(int(1.5 * estimated_throughput) + 10000, self.current_bitrate)
        return min(new_bitrate, max_bitrate)

    def _multiplicative_rate_increase(

        self, new_bitrate: int, last_ms: int, now_ms: int

    ) -> int:
        alpha = 1.08
        if last_ms is not None:
            elapsed_ms = min(now_ms - last_ms, 1000)
            alpha = pow(alpha, elapsed_ms / 1000)
        return int(max((alpha - 1) * new_bitrate, 1000))

    def _near_max_rate_increase(self) -> int:
        bits_per_frame = self.current_bitrate / 30
        packets_per_frame = math.ceil(bits_per_frame / (8 * 1200))
        avg_packet_size_bits = bits_per_frame / packets_per_frame

        response_time = self.rtt + 100
        return max(4000, int((avg_packet_size_bits * 1000) / response_time))

    def _update_max_throughput_estimate(self, estimated_throughput_kbps) -> None:
        alpha = 0.05
        if self.avg_max_bitrate_kbps is None:
            self.avg_max_bitrate_kbps = estimated_throughput_kbps
        else:
            self.avg_max_bitrate_kbps = (
                1 - alpha
            ) * self.avg_max_bitrate_kbps + alpha * estimated_throughput_kbps

        norm = max(1, self.avg_max_bitrate_kbps)
        self.var_max_bitrate_kbps = (1 - alpha) * self.var_max_bitrate_kbps + alpha * (
            (self.avg_max_bitrate_kbps - estimated_throughput_kbps) ** 2
        ) / norm
        self.var_max_bitrate_kbps = max(0.4, min(self.var_max_bitrate_kbps, 2.5))


class TimestampGroup:
    def __init__(self, timestamp: Optional[int] = None) -> None:
        self.arrival_time: Optional[int] = None
        self.first_timestamp = timestamp
        self.last_timestamp = timestamp
        self.size = 0


class InterArrivalDelta:
    def __init__(self, timestamp: int, arrival_time: int, size: int) -> None:
        self.timestamp = timestamp
        self.arrival_time = arrival_time
        self.size = size


class InterArrival:
    """

    Inter-arrival time and size filter.



    Adapted from the webrtc.org codebase.

    """

    def __init__(self, group_length: int, timestamp_to_ms: float) -> None:
        self.group_length = group_length
        self.timestamp_to_ms = timestamp_to_ms
        self.current_group: Optional[TimestampGroup] = None
        self.previous_group: Optional[TimestampGroup] = None

    def compute_deltas(

        self, timestamp: int, arrival_time: int, packet_size: int

    ) -> Optional[InterArrivalDelta]:
        deltas = None
        if self.current_group is None:
            self.current_group = TimestampGroup(timestamp)
        elif self.packet_out_of_order(timestamp):
            return deltas
        elif self.new_timestamp_group(timestamp, arrival_time):
            if self.previous_group is not None:
                deltas = InterArrivalDelta(
                    timestamp=uint32_add(
                        self.current_group.last_timestamp,
                        -self.previous_group.last_timestamp,
                    ),
                    arrival_time=(
                        self.current_group.arrival_time
                        - self.previous_group.arrival_time
                    ),
                    size=self.current_group.size - self.previous_group.size,
                )

            # shift groups
            self.previous_group = self.current_group
            self.current_group = TimestampGroup(timestamp=timestamp)
        elif uint32_gt(timestamp, self.current_group.last_timestamp):
            self.current_group.last_timestamp = timestamp

        self.current_group.size += packet_size
        self.current_group.arrival_time = arrival_time

        return deltas

    def belongs_to_burst(self, timestamp: int, arrival_time: int) -> bool:
        timestamp_delta = uint32_add(timestamp, -self.current_group.last_timestamp)
        timestamp_delta_ms = round(self.timestamp_to_ms * timestamp_delta)
        arrival_time_delta = arrival_time - self.current_group.arrival_time
        return timestamp_delta_ms == 0 or (
            (arrival_time_delta - timestamp_delta_ms) < 0
            and arrival_time_delta <= BURST_DELTA_THRESHOLD_MS
        )

    def new_timestamp_group(self, timestamp: int, arrival_time: int) -> bool:
        if self.belongs_to_burst(timestamp, arrival_time):
            return False
        else:
            timestamp_delta = uint32_add(timestamp, -self.current_group.first_timestamp)
            return timestamp_delta > self.group_length

    def packet_out_of_order(self, timestamp: int) -> bool:
        timestamp_delta = uint32_add(timestamp, -self.current_group.first_timestamp)
        return timestamp_delta >= 0x80000000


class OveruseDetector:
    """

    Bandwidth overuse detector.



    Adapted from the webrtc.org codebase.

    """

    def __init__(self) -> None:
        self.hypothesis = BandwidthUsage.NORMAL
        self.last_update_ms: Optional[int] = None
        self.k_up = 0.0087
        self.k_down = 0.039
        self.overuse_counter = 0
        self.overuse_time: Optional[float] = None
        self.overuse_time_threshold = 10
        self.previous_offset = 0.0
        self.threshold = 12.5

    def detect(

        self, offset: float, timestamp_delta_ms: float, num_of_deltas: int, now_ms: int

    ) -> BandwidthUsage:
        if num_of_deltas < 2:
            return BandwidthUsage.NORMAL

        T = min(num_of_deltas, MIN_NUM_DELTAS) * offset
        if T > self.threshold:
            if self.overuse_time is None:
                self.overuse_time = timestamp_delta_ms / 2
            else:
                self.overuse_time += timestamp_delta_ms
            self.overuse_counter += 1

            if (
                self.overuse_time > self.overuse_time_threshold
                and self.overuse_counter > 1
                and offset >= self.previous_offset
            ):
                self.overuse_counter = 0
                self.overuse_time = 0
                self.hypothesis = BandwidthUsage.OVERUSING
        elif T < -self.threshold:
            self.overuse_counter = 0
            self.overuse_time = None
            self.hypothesis = BandwidthUsage.UNDERUSING
        else:
            self.overuse_counter = 0
            self.overuse_time = None
            self.hypothesis = BandwidthUsage.NORMAL

        self.previous_offset = offset
        self.update_threshold(T, now_ms)
        return self.hypothesis

    def state(self) -> BandwidthUsage:
        return self.hypothesis

    def update_threshold(self, modified_offset: float, now_ms: int) -> None:
        if self.last_update_ms is None:
            self.last_update_ms = now_ms

        if abs(modified_offset) > self.threshold + MAX_ADAPT_OFFSET_MS:
            self.last_update_ms = now_ms
            return

        k = self.k_down if abs(modified_offset) < self.threshold else self.k_up
        time_delta_ms = min(now_ms - self.last_update_ms, 100)
        self.threshold += k * (abs(modified_offset) - self.threshold) * time_delta_ms
        self.threshold = max(6, min(self.threshold, 600))
        self.last_update_ms = now_ms


class OveruseEstimator:
    """

    Bandwidth overuse estimator.



    Adapted from the webrtc.org codebase.

    """

    def __init__(self) -> None:
        self.E = [[100.0, 0.0], [0.0, 0.1]]
        self._num_of_deltas = 0
        self._offset = 0.0
        self.previous_offset = 0.0
        self.slope = 1 / 64
        self.ts_delta_hist: List[float] = []

        self.avg_noise = 0.0
        self.var_noise = 50.0
        self.process_noise = [1e-13, 1e-3]

    def num_of_deltas(self) -> int:
        return self._num_of_deltas

    def offset(self) -> float:
        return self._offset

    def update(

        self,

        time_delta_ms: int,

        timestamp_delta_ms: float,

        size_delta: int,

        current_hypothesis: BandwidthUsage,

        now_ms: int,

    ):
        min_frame_period = self.update_min_frame_period(timestamp_delta_ms)
        t_ts_delta = time_delta_ms - timestamp_delta_ms
        fs_delta = size_delta

        self._num_of_deltas = min(self._num_of_deltas + 1, DELTA_COUNTER_MAX)

        # update  Kalman filter
        self.E[0][0] += self.process_noise[0]
        self.E[1][1] += self.process_noise[1]
        if (
            current_hypothesis == BandwidthUsage.OVERUSING
            and self._offset < self.previous_offset
        ) or (
            current_hypothesis == BandwidthUsage.UNDERUSING
            and self._offset > self.previous_offset
        ):
            self.E[1][1] += 10 * self.process_noise[1]

        h = [fs_delta, 1.0]
        Eh = [
            self.E[0][0] * h[0] + self.E[0][1] * h[1],
            self.E[1][0] * h[0] + self.E[1][1] * h[1],
        ]

        # update noise estimate
        residual = t_ts_delta - self.slope * h[0] - self._offset
        if current_hypothesis == BandwidthUsage.NORMAL:
            max_residual = 3.0 * math.sqrt(self.var_noise)
            if abs(residual) < max_residual:
                self.update_noise_estimate(residual, min_frame_period)
            else:
                self.update_noise_estimate(
                    -max_residual if residual < 0 else max_residual, min_frame_period
                )

        denom = self.var_noise + h[0] * Eh[0] + h[1] * Eh[1]
        K = [Eh[0] / denom, Eh[1] / denom]

        IKh = [[1.0 - K[0] * h[0], -K[0] * h[1]], [-K[1] * h[0], 1.0 - K[1] * h[1]]]
        e00 = self.E[0][0]
        e01 = self.E[0][1]

        # update state
        self.E[0][0] = e00 * IKh[0][0] + self.E[1][0] * IKh[0][1]
        self.E[0][1] = e01 * IKh[0][0] + self.E[1][1] * IKh[0][1]
        self.E[1][0] = e00 * IKh[1][0] + self.E[1][0] * IKh[1][1]
        self.E[1][1] = e01 * IKh[1][0] + self.E[1][1] * IKh[1][1]

        self.previous_offset = self._offset
        self.slope += K[0] * residual
        self._offset += K[1] * residual

    def update_min_frame_period(self, ts_delta: float) -> float:
        min_frame_period = ts_delta
        if len(self.ts_delta_hist) >= MIN_FRAME_PERIOD_HISTORY_LENGTH:
            self.ts_delta_hist.pop(0)

        for old_ts_delta in self.ts_delta_hist:
            min_frame_period = min(old_ts_delta, min_frame_period)

        self.ts_delta_hist.append(ts_delta)
        return min_frame_period

    def update_noise_estimate(self, residual: float, ts_delta: float) -> None:
        alpha = 0.01
        if self._num_of_deltas > 10 * 30:
            alpha = 0.002

        beta = pow(1 - alpha, ts_delta * 30.0 / 1000.0)
        self.avg_noise = beta * self.avg_noise + (1 - beta) * residual
        self.var_noise = (
            beta * self.var_noise + (1 - beta) * (self.avg_noise - residual) ** 2
        )

        if self.var_noise < 1:
            self.var_noise = 1


class RateBucket:
    def __init__(self, count: int = 0, value: int = 0) -> None:
        self.count = count
        self.value = value

    def __eq__(self, other) -> bool:
        return self.count == other.count and self.value == other.value


class RateCounter:
    """

    Rate counter, which stores the amount received in 1ms buckets.

    """

    def __init__(self, window_size: int, scale: int = 8000) -> None:
        self._origin_index = 0
        self._origin_ms: Optional[int] = None
        self._scale = scale
        self._window_size = window_size
        self.reset()

    def add(self, value: int, now_ms: int) -> None:
        if self._origin_ms is None:
            self._origin_ms = now_ms
        else:
            self._erase_old(now_ms)

        index = (self._origin_index + now_ms - self._origin_ms) % self._window_size
        self._buckets[index].count += 1
        self._buckets[index].value += value
        self._total.count += 1
        self._total.value += value

    def rate(self, now_ms: int) -> Optional[int]:
        if self._origin_ms is not None:
            self._erase_old(now_ms)
            active_window_size = now_ms - self._origin_ms + 1
            if self._total.count > 0 and active_window_size > 1:
                return round(self._scale * self._total.value / active_window_size)
        return None

    def reset(self) -> None:
        self._buckets = [RateBucket() for i in range(self._window_size)]
        self._origin_index = 0
        self._origin_ms = None
        self._total = RateBucket()

    def _erase_old(self, now_ms: int) -> None:
        new_origin_ms = now_ms - self._window_size + 1
        while self._origin_ms < new_origin_ms:
            bucket = self._buckets[self._origin_index]
            self._total.count -= bucket.count
            self._total.value -= bucket.value
            bucket.count = 0
            bucket.value = 0

            self._origin_index = (self._origin_index + 1) % self._window_size
            self._origin_ms += 1


class RemoteBitrateEstimator:
    def __init__(self) -> None:
        self.incoming_bitrate = RateCounter(1000, 8000)
        self.incoming_bitrate_initialized = True
        self.inter_arrival = InterArrival(
            (TIMESTAMP_GROUP_LENGTH_MS << INTER_ARRIVAL_SHIFT) // 1000, TIMESTAMP_TO_MS
        )
        self.estimator = OveruseEstimator()
        self.detector = OveruseDetector()
        self.rate_control = AimdRateControl()
        self.last_update_ms: Optional[int] = None
        self.ssrcs: Dict[int, int] = {}

    def add(

        self, arrival_time_ms: int, abs_send_time: int, payload_size: int, ssrc: int

    ) -> Optional[Tuple[int, List[int]]]:
        timestamp = abs_send_time << 8
        update_estimate = False

        # make note of SSRC
        self.ssrcs[ssrc] = arrival_time_ms

        # update incoming bitrate
        if self.incoming_bitrate.rate(arrival_time_ms) is not None:
            self.incoming_bitrate_initialized = True
        elif self.incoming_bitrate_initialized:
            self.incoming_bitrate.reset()
            self.incoming_bitrate_initialized = False
        self.incoming_bitrate.add(payload_size, arrival_time_ms)

        # calculate inter-arrival deltas
        deltas = self.inter_arrival.compute_deltas(
            timestamp, arrival_time_ms, payload_size
        )
        if deltas is not None:
            timestamp_delta_ms = deltas.timestamp * TIMESTAMP_TO_MS
            self.estimator.update(
                deltas.arrival_time,
                timestamp_delta_ms,
                deltas.size,
                self.detector.state(),
                arrival_time_ms,
            )
            self.detector.detect(
                self.estimator.offset(),
                timestamp_delta_ms,
                self.estimator.num_of_deltas(),
                arrival_time_ms,
            )

        if not update_estimate:
            if (
                self.last_update_ms is None
                or (arrival_time_ms - self.last_update_ms)
                > self.rate_control.feedback_interval()
            ):
                update_estimate = True
            elif self.detector.state() == BandwidthUsage.OVERUSING:
                update_estimate = True

        if update_estimate:
            target_bitrate = self.rate_control.update(
                self.detector.state(),
                self.incoming_bitrate.rate(arrival_time_ms),
                arrival_time_ms,
            )
            if target_bitrate is not None:
                self.last_update_ms = arrival_time_ms
                return target_bitrate, list(self.ssrcs.keys())

        return None