Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,181 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
3 |
-
from sentence_transformers import SentenceTransformer
|
4 |
import chromadb
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
# Load
|
7 |
-
|
8 |
def load_recipes():
|
9 |
try:
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
except Exception as e:
|
14 |
-
|
15 |
-
return
|
16 |
|
17 |
recipes_df = load_recipes()
|
18 |
|
19 |
-
|
20 |
-
st.error("❌ Failed to load dataset! Check internet or dataset availability.")
|
21 |
-
st.stop() # Stops Streamlit from running further if the dataset isn't loaded
|
22 |
-
|
23 |
-
# Load embedding model
|
24 |
@st.cache_resource
|
25 |
def load_embedding_model():
|
26 |
-
return SentenceTransformer("
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
# Initialize ChromaDB
|
31 |
-
chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
32 |
-
|
33 |
-
|
34 |
-
#
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
results
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import pandas as pd
|
|
|
3 |
import chromadb
|
4 |
+
from sentence_transformers import SentenceTransformer
|
5 |
+
from transformers import pipeline, AutoModelForQuestionAnswering, AutoTokenizer
|
6 |
+
from PIL import Image
|
7 |
+
from io import BytesIO
|
8 |
+
import requests
|
9 |
|
10 |
+
# --- 1. Load Recipes Dataset ---
|
11 |
+
@st.cache_data
|
12 |
def load_recipes():
|
13 |
try:
|
14 |
+
recipes_df = pd.read_csv("recipes.csv")
|
15 |
+
recipes_df = recipes_df.rename(columns={"recipe_name": "title", "directions": "instructions"})
|
16 |
+
recipes_df = recipes_df[['title', 'ingredients', 'instructions', 'img_src']]
|
17 |
+
recipes_df.fillna("", inplace=True)
|
18 |
+
recipes_df["ingredients"] = recipes_df["ingredients"].str.lower().str.replace(r'[^\w\s]', '', regex=True)
|
19 |
+
recipes_df["combined_text"] = recipes_df["title"] + " " + recipes_df["ingredients"]
|
20 |
+
return recipes_df
|
21 |
except Exception as e:
|
22 |
+
st.error(f"⚠ Error loading recipes: {e}")
|
23 |
+
return pd.DataFrame()
|
24 |
|
25 |
recipes_df = load_recipes()
|
26 |
|
27 |
+
# --- 2. Load SentenceTransformer Model ---
|
|
|
|
|
|
|
|
|
28 |
@st.cache_resource
|
29 |
def load_embedding_model():
|
30 |
+
return SentenceTransformer("all-mpnet-base-v2")
|
31 |
+
|
32 |
+
embedding_model = load_embedding_model()
|
33 |
+
|
34 |
+
# --- 3. Initialize ChromaDB ---
|
35 |
+
chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
36 |
+
collection = chroma_client.get_or_create_collection(name="recipe_collection")
|
37 |
+
|
38 |
+
# --- 4. Generate & Store Embeddings ---
|
39 |
+
def get_sentence_transformer_embeddings(text):
|
40 |
+
return embedding_model.encode(text).tolist()
|
41 |
+
|
42 |
+
try:
|
43 |
+
existing_data = collection.get()
|
44 |
+
existing_ids = set(existing_data["ids"]) if existing_data and "ids" in existing_data else set()
|
45 |
+
except Exception as e:
|
46 |
+
st.error(f"⚠ ChromaDB Error: {e}")
|
47 |
+
existing_ids = set()
|
48 |
+
|
49 |
+
for index, row in recipes_df.iterrows():
|
50 |
+
recipe_id = str(index)
|
51 |
+
if recipe_id in existing_ids:
|
52 |
+
continue
|
53 |
+
embedding = get_sentence_transformer_embeddings(row["combined_text"])
|
54 |
+
if embedding:
|
55 |
+
collection.add(embeddings=[embedding], documents=[row["combined_text"]], ids=[recipe_id])
|
56 |
+
|
57 |
+
# --- 5. Retrieve Similar Recipes ---
|
58 |
+
def retrieve_recipes(query, top_k=3):
|
59 |
+
query_embedding = get_sentence_transformer_embeddings(query)
|
60 |
+
results = collection.query(query_embeddings=[query_embedding], n_results=top_k)
|
61 |
+
|
62 |
+
if results and "ids" in results and results["ids"]: # Check existence before accessing
|
63 |
+
recipe_indices = [int(id) for id in results["ids"][0] if id.isdigit()]
|
64 |
+
return recipes_df.iloc[recipe_indices] if recipe_indices else None
|
65 |
+
return None
|
66 |
+
|
67 |
+
# --- 6. Load a Compatible LLM for Q&A ---
|
68 |
+
@st.cache_resource
|
69 |
+
def load_llm_model():
|
70 |
+
tokenizer = AutoTokenizer.from_pretrained("deepset/roberta-base-squad2") # Better Q&A model
|
71 |
+
model = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-base-squad2")
|
72 |
+
return pipeline("question-answering", model=model, tokenizer=tokenizer)
|
73 |
+
|
74 |
+
llm_model = load_llm_model()
|
75 |
+
|
76 |
+
# --- 5. Answer Greeting and Handle Q&A Queries ---
|
77 |
+
def answer_question(query, context=""):
|
78 |
+
# Handle greetings or non-informational queries
|
79 |
+
greetings = ["hi", "hello", "hii", "hey", "greetings", "how are you", "what's up", "how's it going"]
|
80 |
+
if query.lower().strip() in greetings:
|
81 |
+
return "Hello! How can I assist you today? Feel free to ask about recipes or any other questions."
|
82 |
+
|
83 |
+
# If not a greeting, check if it is a valid Q&A query
|
84 |
+
if query.lower().strip() not in greetings:
|
85 |
+
# Use the QA model for other questions
|
86 |
+
response = qa_model(question=query, context=context)
|
87 |
+
|
88 |
+
# Check if the response from the model is valid
|
89 |
+
if response and "answer" in response and response["answer"].strip():
|
90 |
+
return response["answer"]
|
91 |
+
else:
|
92 |
+
return "I'm sorry, I couldn't generate a response for your query."
|
93 |
+
|
94 |
+
return None
|
95 |
+
|
96 |
+
# --- 6. Classify Query Type (Q&A or Recipe Search) ---
|
97 |
+
@st.cache_resource
|
98 |
+
def load_classifier():
|
99 |
+
return pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
|
100 |
+
|
101 |
+
classifier = load_classifier()
|
102 |
+
|
103 |
+
def classify_query(query):
|
104 |
+
# Keywords that may indicate a recipe-related query
|
105 |
+
recipe_keywords = ["make", "cook", "bake", "recipe", "prepare"]
|
106 |
+
|
107 |
+
# Check if query contains common recipe-related keywords
|
108 |
+
if any(keyword in query.lower() for keyword in recipe_keywords):
|
109 |
+
return "Recipe Search"
|
110 |
+
|
111 |
+
labels = ["Q&A", "Recipe Search"]
|
112 |
+
result = classifier(query, labels)
|
113 |
+
return result["labels"][0]
|
114 |
+
|
115 |
+
# --- 8. Display Image Function ---
|
116 |
+
def display_image(image_url, recipe_name):
|
117 |
+
try:
|
118 |
+
if not isinstance(image_url, str) or not image_url.startswith("http"):
|
119 |
+
raise ValueError("Invalid or missing image URL")
|
120 |
+
response = requests.get(image_url, timeout=5)
|
121 |
+
response.raise_for_status()
|
122 |
+
image = Image.open(BytesIO(response.content))
|
123 |
+
st.image(image, caption=recipe_name, use_container_width=True)
|
124 |
+
except requests.exceptions.RequestException as e:
|
125 |
+
st.warning(f"⚠ Image fetch error: {e}")
|
126 |
+
placeholder_url = "https://via.placeholder.com/300?text=No+Image"
|
127 |
+
st.image(placeholder_url, caption=recipe_name, use_container_width=True)
|
128 |
+
|
129 |
+
# --- Streamlit UI ---
|
130 |
+
st.title("🍽️ AI Recipe & Q&A Assistant")
|
131 |
+
|
132 |
+
# Unique key for the main user query input
|
133 |
+
user_query = st.text_input("Enter your question or recipe search query:", "", key="main_query_input")
|
134 |
+
|
135 |
+
# Use session state to store the retrieved recipe
|
136 |
+
if "retrieved_recipes" not in st.session_state:
|
137 |
+
st.session_state["retrieved_recipes"] = None
|
138 |
+
|
139 |
+
if st.button("Ask AI"):
|
140 |
+
if user_query:
|
141 |
+
# Handle greetings and other specific queries with answer_question
|
142 |
+
response = answer_question(user_query)
|
143 |
+
|
144 |
+
if response and "Hello!" in response:
|
145 |
+
st.subheader("🤖 AI Answer:")
|
146 |
+
st.write(response)
|
147 |
+
else:
|
148 |
+
# Classify the query if not a greeting
|
149 |
+
intent = classify_query(user_query)
|
150 |
+
|
151 |
+
if intent == "Q&A":
|
152 |
+
st.subheader("🤖 AI Answer:")
|
153 |
+
context = "You can add specific context here, or leave it empty."
|
154 |
+
response = answer_question(user_query, context)
|
155 |
+
st.write(response)
|
156 |
+
|
157 |
+
elif intent == "Recipe Search":
|
158 |
+
retrieved_recipes = retrieve_recipes(user_query)
|
159 |
+
if retrieved_recipes is not None and not retrieved_recipes.empty:
|
160 |
+
st.session_state["retrieved_recipes"] = retrieved_recipes # Store retrieved recipes in session state
|
161 |
+
st.subheader("🍴 Found Recipes:")
|
162 |
+
for index, recipe in retrieved_recipes.iterrows():
|
163 |
+
st.markdown(f"### {recipe['title']}")
|
164 |
+
st.write(f"**Ingredients:** {recipe['ingredients']}")
|
165 |
+
st.write(f"**Instructions:** {recipe['instructions']}")
|
166 |
+
display_image(recipe.get('img_src', ''), recipe['title'])
|
167 |
+
|
168 |
+
# Unique key for each follow-up question input
|
169 |
+
follow_up_query = st.text_input(
|
170 |
+
"Any modifications or follow-up questions about this recipe?",
|
171 |
+
key=f"follow_up_query_{index}"
|
172 |
+
)
|
173 |
+
|
174 |
+
if st.button(f"Submit Follow-up for {recipe['title']}", key=f"submit_follow_up_{index}"):
|
175 |
+
# Handle follow-up query
|
176 |
+
response = handle_follow_up(follow_up_query, recipe)
|
177 |
+
st.write(response)
|
178 |
+
else:
|
179 |
+
st.warning("⚠️ No relevant recipes found.")
|
180 |
+
else:
|
181 |
+
st.warning("❌ Unable to classify the query.")
|