Update app.py
Browse files
app.py
CHANGED
@@ -1,109 +1,32 @@
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
3 |
-
import chromadb
|
4 |
-
from sentence_transformers import SentenceTransformer
|
5 |
-
from transformers import pipeline
|
6 |
-
from PIL import Image
|
7 |
-
from io import BytesIO
|
8 |
import requests
|
9 |
-
import
|
10 |
-
from
|
11 |
-
|
12 |
|
13 |
# --- 1. Load Recipes Dataset ---
|
14 |
@st.cache_data
|
15 |
-
def
|
16 |
-
|
17 |
-
recipes_df = pd.read_csv("recipes.csv")
|
18 |
-
recipes_df = recipes_df.rename(columns={"recipe_name": "title", "directions": "instructions"})
|
19 |
-
recipes_df = recipes_df[['title', 'ingredients', 'instructions', 'img_src']]
|
20 |
-
recipes_df.fillna("", inplace=True)
|
21 |
-
recipes_df["ingredients"] = recipes_df["ingredients"].str.lower().str.replace(r'[^\w\s]', '', regex=True)
|
22 |
-
recipes_df["combined_text"] = recipes_df["title"] + " " + recipes_df["ingredients"]
|
23 |
-
return recipes_df
|
24 |
-
except Exception as e:
|
25 |
-
st.error(f"⚠ Error loading recipes: {e}")
|
26 |
-
return pd.DataFrame()
|
27 |
-
|
28 |
-
recipes_df = load_recipes()
|
29 |
-
|
30 |
-
# --- 2. Load SentenceTransformer Model ---
|
31 |
-
@st.cache_resource
|
32 |
-
def load_embedding_model():
|
33 |
-
return SentenceTransformer("all-MiniLM-L6-v2") # Smaller & optimized model
|
34 |
-
|
35 |
-
embedding_model = load_embedding_model()
|
36 |
-
|
37 |
-
# --- 3. Initialize ChromaDB ---
|
38 |
-
chroma_client = chromadb.PersistentClient(path="./chroma_db")
|
39 |
-
collection = chroma_client.get_or_create_collection(name="recipe_collection")
|
40 |
-
|
41 |
-
# --- 4. Generate & Store Embeddings ---
|
42 |
-
def get_sentence_transformer_embeddings(text):
|
43 |
-
return embedding_model.encode(text).tolist()
|
44 |
|
45 |
-
|
46 |
-
existing_data = collection.get()
|
47 |
-
existing_ids = set(existing_data.get("ids", [])) # Use `.get()` for safety
|
48 |
-
except Exception as e:
|
49 |
-
st.error(f"⚠ ChromaDB Error: {e}")
|
50 |
-
existing_ids = set()
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
if recipe_id in existing_ids:
|
55 |
-
continue
|
56 |
-
embedding = get_sentence_transformer_embeddings(row["combined_text"])
|
57 |
-
if embedding:
|
58 |
-
collection.add(
|
59 |
-
embeddings=[embedding],
|
60 |
-
documents=[row["combined_text"]],
|
61 |
-
ids=[recipe_id],
|
62 |
-
metadatas=[{"title": row["title"], "ingredients": row["ingredients"], "instructions": row["instructions"], "img_src": row["img_src"]}]
|
63 |
-
)
|
64 |
|
65 |
-
# ---
|
66 |
-
def
|
67 |
-
|
68 |
-
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
hf_token = st.secrets["key"]
|
76 |
-
if hf_token is None:
|
77 |
-
raise ValueError("Hugging Face token is missing. Add it as a secret in your Space.")
|
78 |
-
login(token=hf_token)
|
79 |
|
80 |
-
# ---
|
81 |
-
@st.cache_resource
|
82 |
-
def load_llm_model():
|
83 |
-
return pipeline("text-generation", model="mistralai/Mistral-7B-Instruct-v0.3")
|
84 |
-
|
85 |
-
llm_model = load_llm_model()
|
86 |
-
|
87 |
-
# --- 7. Validate Recipe Query ---
|
88 |
-
def is_recipe_query(query):
|
89 |
-
# Check if the query includes any food-related words
|
90 |
-
food_keywords = ["recipe", "cook", "ingredient", "dish", "food", "meal","Prepare","Make"]
|
91 |
-
return any(keyword in query.lower() for keyword in food_keywords)
|
92 |
-
|
93 |
-
def generate_recipe(query):
|
94 |
-
related_recipes = retrieve_recipes(query, top_k=2)
|
95 |
-
|
96 |
-
if not related_recipes or related_recipes.empty:
|
97 |
-
return "I couldn't find a matching recipe, but let me create one for you!"
|
98 |
-
|
99 |
-
base_text = "\n".join([f"- {r['title']}: {r['ingredients']}" for _, r in related_recipes.iterrows()])
|
100 |
-
# Construct the full prompt for generating a recipe
|
101 |
-
full_prompt = f"Using these ingredients: {query}, create a unique recipe.\n\nHere are similar recipes:\n{base_text}\n\nNow create a new recipe that uses these ideas."
|
102 |
-
|
103 |
-
response = llm_model(full_prompt, max_length=200, num_return_sequences=1)
|
104 |
-
return response[0]["generated_text"]
|
105 |
-
|
106 |
-
# --- 8. Display Image Function ---
|
107 |
def display_image(image_url, recipe_name):
|
108 |
try:
|
109 |
if not isinstance(image_url, str) or not image_url.startswith("http"):
|
@@ -112,36 +35,24 @@ def display_image(image_url, recipe_name):
|
|
112 |
response.raise_for_status()
|
113 |
image = Image.open(BytesIO(response.content))
|
114 |
st.image(image, caption=recipe_name, use_container_width=True)
|
115 |
-
except requests.exceptions.RequestException
|
116 |
-
st.
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
st.
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
if retrieved_recipes is not None and not retrieved_recipes.empty:
|
137 |
-
st.session_state["retrieved_recipes"] = retrieved_recipes
|
138 |
-
st.subheader("🍴 Found Recipes:")
|
139 |
-
for _, recipe in retrieved_recipes.iterrows():
|
140 |
-
st.markdown(f"### {recipe['title']}")
|
141 |
-
st.write(f"**Ingredients:** {recipe['ingredients']}")
|
142 |
-
st.write(f"**Instructions:** {recipe['instructions']}")
|
143 |
-
display_image(recipe.get('img_src', ''), recipe['title'])
|
144 |
-
else:
|
145 |
-
st.warning("⚠️ No relevant recipes found.")
|
146 |
-
else:
|
147 |
-
st.write("I can't answer that. Please ask me about recipes.")
|
|
|
1 |
import streamlit as st
|
2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
|
3 |
import requests
|
4 |
+
from io import BytesIO
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import pipeline
|
7 |
|
8 |
# --- 1. Load Recipes Dataset ---
|
9 |
@st.cache_data
|
10 |
+
def load_data():
|
11 |
+
return pd.read_csv("recipes.csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
+
df = load_data()
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
# --- 2. Initialize LLM Pipeline ---
|
16 |
+
llm = pipeline("text-generation", model="facebook/opt-1.3b")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
# --- 3. Retrieve Recipe Function ---
|
19 |
+
def retrieve_recipe(query):
|
20 |
+
matching_recipes = df[df['recipe_name'].str.contains(query, case=False, na=False)]
|
21 |
+
return matching_recipes if not matching_recipes.empty else None
|
22 |
|
23 |
+
# --- 4. Generate Response for Non-Recipe Queries ---
|
24 |
+
def generate_response(query):
|
25 |
+
prompt = f"You are an AI assistant that only provides recipe-related responses. If the user asks something unrelated to recipes, politely decline. Query: {query}"
|
26 |
+
response = llm(prompt, max_length=100, do_sample=True)[0]['generated_text']
|
27 |
+
return response
|
|
|
|
|
|
|
|
|
28 |
|
29 |
+
# --- 5. Display Image Function ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
def display_image(image_url, recipe_name):
|
31 |
try:
|
32 |
if not isinstance(image_url, str) or not image_url.startswith("http"):
|
|
|
35 |
response.raise_for_status()
|
36 |
image = Image.open(BytesIO(response.content))
|
37 |
st.image(image, caption=recipe_name, use_container_width=True)
|
38 |
+
except requests.exceptions.RequestException:
|
39 |
+
st.image("https://via.placeholder.com/300?text=No+Image", caption=recipe_name, use_container_width=True)
|
40 |
+
|
41 |
+
# --- 6. Streamlit UI ---
|
42 |
+
st.title("🍽 Recipe Finder RAG App")
|
43 |
+
query = st.text_input("Ask me for a recipe:")
|
44 |
+
|
45 |
+
if query:
|
46 |
+
recipe_result = retrieve_recipe(query)
|
47 |
+
if recipe_result is not None:
|
48 |
+
for _, row in recipe_result.iterrows():
|
49 |
+
st.subheader(row['recipe_name'])
|
50 |
+
st.write(f"**Prep Time:** {row['prep_time']} | **Cook Time:** {row['cook_time']} | **Total Time:** {row['total_time']}")
|
51 |
+
st.write(f"**Servings:** {row['servings']} | **Yield:** {row['yield']}")
|
52 |
+
st.write(f"**Ingredients:** {row['ingredients']}")
|
53 |
+
st.write(f"**Directions:** {row['directions']}")
|
54 |
+
st.write(f"[View Full Recipe]({row['url']})")
|
55 |
+
display_image(row['img_src'], row['recipe_name'])
|
56 |
+
else:
|
57 |
+
st.warning("⚠ No recipe found! Generating a response...")
|
58 |
+
st.write(generate_response(query))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|