Spaces:
Sleeping
Sleeping
import streamlit as st | |
from huggingface_hub import HfApi | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
from datetime import datetime | |
from concurrent.futures import ThreadPoolExecutor, as_completed | |
from functools import lru_cache | |
import time | |
import requests | |
from collections import Counter | |
st.set_page_config(page_title="HF Contributions", layout="wide") | |
api = HfApi() | |
# Cache for API responses | |
def cached_repo_info(repo_id, repo_type): | |
return api.repo_info(repo_id=repo_id, repo_type=repo_type) | |
def cached_list_commits(repo_id, repo_type): | |
return list(api.list_repo_commits(repo_id=repo_id, repo_type=repo_type)) | |
def cached_list_items(username, kind): | |
if kind == "model": | |
return list(api.list_models(author=username)) | |
elif kind == "dataset": | |
return list(api.list_datasets(author=username)) | |
elif kind == "space": | |
return list(api.list_spaces(author=username)) | |
return [] | |
# Function to fetch trending accounts and create stats | |
def get_trending_accounts(limit=100): | |
try: | |
# Get spaces for stats calculation | |
spaces_response = requests.get("https://huggingface.co/api/spaces", | |
params={"limit": 10000}, | |
timeout=30) | |
if spaces_response.status_code == 200: | |
spaces = spaces_response.json() | |
# Count spaces by owner | |
owner_counts = {} | |
for space in spaces: | |
if '/' in space.get('id', ''): | |
owner, _ = space.get('id', '').split('/', 1) | |
else: | |
owner = space.get('owner', '') | |
if owner != 'None': | |
owner_counts[owner] = owner_counts.get(owner, 0) + 1 | |
# Get top owners by count | |
top_owners = sorted(owner_counts.items(), key=lambda x: x[1], reverse=True)[:limit] | |
# Extract just the owner names for dropdown | |
trending_authors = [owner for owner, count in top_owners] | |
return trending_authors, top_owners | |
else: | |
# Fallback to API method if HTTP request fails | |
trending_models = list(api.list_models(sort="trending", limit=limit)) | |
trending_datasets = list(api.list_datasets(sort="trending", limit=limit)) | |
trending_spaces = list(api.list_spaces(sort="trending", limit=limit)) | |
# Extract unique authors | |
authors = set() | |
for item in trending_models + trending_datasets + trending_spaces: | |
if hasattr(item, "author"): | |
authors.add(item.author) | |
elif hasattr(item, "id") and "/" in item.id: | |
authors.add(item.id.split("/")[0]) | |
# Return sorted list of unique authors and empty stats | |
author_list = sorted(list(authors))[:limit] | |
return author_list, [(author, 0) for author in author_list[:30]] | |
except Exception as e: | |
st.error(f"Error fetching trending accounts: {str(e)}") | |
fallback_authors = ["ritvik77", "facebook", "google", "stabilityai", "Salesforce", "tiiuae", "bigscience"] | |
return fallback_authors, [(author, 0) for author in fallback_authors] | |
# Rate limiting | |
class RateLimiter: | |
def __init__(self, calls_per_second=10): | |
self.calls_per_second = calls_per_second | |
self.last_call = 0 | |
def wait(self): | |
current_time = time.time() | |
time_since_last_call = current_time - self.last_call | |
if time_since_last_call < (1.0 / self.calls_per_second): | |
time.sleep((1.0 / self.calls_per_second) - time_since_last_call) | |
self.last_call = time.time() | |
rate_limiter = RateLimiter() | |
# Function to fetch commits for a repository (optimized) | |
def fetch_commits_for_repo(repo_id, repo_type, username, selected_year): | |
try: | |
rate_limiter.wait() | |
# Skip private/gated repos upfront | |
repo_info = cached_repo_info(repo_id, repo_type) | |
if repo_info.private or (hasattr(repo_info, 'gated') and repo_info.gated): | |
return [], [] | |
# Get initial commit date | |
initial_commit_date = pd.to_datetime(repo_info.created_at).tz_localize(None).date() | |
commit_dates = [] | |
commit_count = 0 | |
# Add initial commit if it's from the selected year | |
if initial_commit_date.year == selected_year: | |
commit_dates.append(initial_commit_date) | |
commit_count += 1 | |
# Get all commits | |
commits = cached_list_commits(repo_id, repo_type) | |
for commit in commits: | |
commit_date = pd.to_datetime(commit.created_at).tz_localize(None).date() | |
if commit_date.year == selected_year: | |
commit_dates.append(commit_date) | |
commit_count += 1 | |
return commit_dates, commit_count | |
except Exception: | |
return [], 0 | |
# Function to get commit events for a user (optimized) | |
def get_commit_events(username, kind=None, selected_year=None): | |
commit_dates = [] | |
items_with_type = [] | |
kinds = [kind] if kind else ["model", "dataset", "space"] | |
for k in kinds: | |
try: | |
items = cached_list_items(username, k) | |
items_with_type.extend((item, k) for item in items) | |
repo_ids = [item.id for item in items] | |
# Optimized parallel fetch with chunking | |
chunk_size = 5 # Process 5 repos at a time | |
for i in range(0, len(repo_ids), chunk_size): | |
chunk = repo_ids[i:i + chunk_size] | |
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor: | |
future_to_repo = { | |
executor.submit(fetch_commits_for_repo, repo_id, k, username, selected_year): repo_id | |
for repo_id in chunk | |
} | |
for future in as_completed(future_to_repo): | |
repo_commits, repo_count = future.result() | |
if repo_commits: # Only extend if we got commits | |
commit_dates.extend(repo_commits) | |
except Exception as e: | |
st.warning(f"Error fetching {k}s for {username}: {str(e)}") | |
# Create DataFrame with all commits | |
df = pd.DataFrame(commit_dates, columns=["date"]) | |
if not df.empty: | |
df = df.drop_duplicates() # Remove any duplicate dates | |
return df, items_with_type | |
# Calendar heatmap function (optimized) | |
def make_calendar_heatmap(df, title, year): | |
if df.empty: | |
st.info(f"No {title.lower()} found for {year}.") | |
return | |
# Optimize DataFrame operations | |
df["count"] = 1 | |
df = df.groupby("date", as_index=False).sum() | |
df["date"] = pd.to_datetime(df["date"]) | |
# Create date range more efficiently | |
start = pd.Timestamp(f"{year}-01-01") | |
end = pd.Timestamp(f"{year}-12-31") | |
all_days = pd.date_range(start=start, end=end) | |
# Optimize DataFrame creation and merging | |
heatmap_data = pd.DataFrame({"date": all_days, "count": 0}) | |
heatmap_data = heatmap_data.merge(df, on="date", how="left", suffixes=("", "_y")) | |
heatmap_data["count"] = heatmap_data["count_y"].fillna(0) | |
heatmap_data = heatmap_data.drop("count_y", axis=1) | |
# Calculate week and day of week more efficiently | |
heatmap_data["dow"] = heatmap_data["date"].dt.dayofweek | |
heatmap_data["week"] = (heatmap_data["date"] - start).dt.days // 7 | |
# Create pivot table more efficiently | |
pivot = heatmap_data.pivot(index="dow", columns="week", values="count").fillna(0) | |
# Optimize month labels calculation | |
month_labels = pd.date_range(start, end, freq="MS").strftime("%b") | |
month_positions = pd.date_range(start, end, freq="MS").map(lambda x: (x - start).days // 7) | |
# Create custom colormap with specific boundaries | |
from matplotlib.colors import ListedColormap, BoundaryNorm | |
colors = ['#ebedf0', '#9be9a8', '#40c463', '#30a14e', '#216e39'] # GitHub-style green colors | |
bounds = [0, 1, 3, 11, 31, float('inf')] # Boundaries for color transitions | |
cmap = ListedColormap(colors) | |
norm = BoundaryNorm(bounds, cmap.N) | |
# Create plot more efficiently | |
fig, ax = plt.subplots(figsize=(12, 1.2)) | |
# Convert pivot values to integers to ensure proper color mapping | |
pivot_int = pivot.astype(int) | |
# Create heatmap with explicit vmin and vmax | |
sns.heatmap(pivot_int, ax=ax, cmap=cmap, norm=norm, linewidths=0.5, linecolor="white", | |
square=True, cbar=False, yticklabels=["M", "T", "W", "T", "F", "S", "S"]) | |
ax.set_title(f"{title}", fontsize=12, pad=10) | |
ax.set_xlabel("") | |
ax.set_ylabel("") | |
ax.set_xticks(month_positions) | |
ax.set_xticklabels(month_labels, fontsize=8) | |
ax.set_yticklabels(ax.get_yticklabels(), rotation=0, fontsize=8) | |
st.pyplot(fig) | |
# Sidebar | |
with st.sidebar: | |
st.title("👤 Contributor") | |
# Fetch trending accounts with a loading spinner | |
with st.spinner("Loading top trending accounts..."): | |
trending_accounts, top_owners = get_trending_accounts(limit=100) | |
# Show trending accounts list | |
st.subheader("🔥 Top 30 Trending Accounts") | |
# Display the top 30 accounts list with their scores | |
st.markdown("### Trending Contributors Ranking") | |
# Create a data frame for the table | |
if top_owners: | |
ranking_data = pd.DataFrame(top_owners[:30], columns=["Contributor", "Spaces Count"]) | |
ranking_data.index = ranking_data.index + 1 # Start index from 1 for ranking | |
# Style the table | |
st.dataframe( | |
ranking_data, | |
column_config={ | |
"Contributor": st.column_config.TextColumn("Contributor"), | |
"Spaces Count": st.column_config.NumberColumn("Spaces Count", format="%d") | |
}, | |
use_container_width=True, | |
hide_index=False | |
) | |
# Add stats expander with visualization | |
with st.expander("View Top 30 Contributor Chart"): | |
# Create a bar chart for top 30 contributors | |
if top_owners: | |
chart_data = pd.DataFrame(top_owners[:30], columns=["Owner", "Spaces Count"]) | |
fig, ax = plt.subplots(figsize=(10, 8)) | |
bars = ax.barh(chart_data["Owner"], chart_data["Spaces Count"]) | |
# Add color gradient to bars | |
for i, bar in enumerate(bars): | |
bar.set_color(plt.cm.viridis(i/len(bars))) | |
ax.set_title("Top 30 Contributors by Number of Spaces") | |
ax.set_xlabel("Number of Spaces") | |
plt.tight_layout() | |
st.pyplot(fig) | |
# Display trending accounts without additional filtering | |
selected_trending = st.selectbox( | |
"Select trending account", | |
options=trending_accounts[:30], # Limit to top 30 | |
index=0 if trending_accounts else None, | |
key="trending_selectbox" | |
) | |
# Custom account input option | |
st.markdown("<div style='text-align: center; margin: 10px 0;'>OR</div>", unsafe_allow_html=True) | |
custom = st.text_input("", placeholder="Enter custom username/org") | |
# Set username based on selection or custom input | |
if custom.strip(): | |
username = custom.strip() | |
elif selected_trending: | |
username = selected_trending | |
else: | |
username = "facebook" # Default fallback | |
# Year selection | |
st.subheader("🗓️ Time Period") | |
year_options = list(range(datetime.now().year, 2017, -1)) | |
selected_year = st.selectbox("Select Year", options=year_options) | |
# Additional options for customization | |
st.subheader("⚙️ Display Options") | |
show_models = st.checkbox("Show Models", value=True) | |
show_datasets = st.checkbox("Show Datasets", value=True) | |
show_spaces = st.checkbox("Show Spaces", value=True) | |
# Main Content | |
st.title("🤗 Hugging Face Contributions") | |
if username: | |
with st.spinner(f"Fetching commit data for {username}..."): | |
# Display contributor rank if in top 100 | |
if username in trending_accounts[:30]: | |
rank = trending_accounts.index(username) + 1 | |
st.success(f"🏆 {username} is ranked #{rank} in the top trending contributors!") | |
# Create a dictionary to store commits by type | |
commits_by_type = {} | |
commit_counts_by_type = {} | |
# Determine which types to fetch based on checkboxes | |
types_to_fetch = [] | |
if show_models: | |
types_to_fetch.append("model") | |
if show_datasets: | |
types_to_fetch.append("dataset") | |
if show_spaces: | |
types_to_fetch.append("space") | |
if not types_to_fetch: | |
st.warning("Please select at least one content type to display (Models, Datasets, or Spaces)") | |
st.stop() | |
# Fetch commits for each selected type | |
for kind in types_to_fetch: | |
try: | |
items = cached_list_items(username, kind) | |
repo_ids = [item.id for item in items] | |
st.info(f"Found {len(repo_ids)} {kind}s for {username}") | |
# Process repos in chunks | |
chunk_size = 5 | |
total_commits = 0 | |
all_commit_dates = [] | |
progress_bar = st.progress(0) | |
for i in range(0, len(repo_ids), chunk_size): | |
chunk = repo_ids[i:i + chunk_size] | |
with ThreadPoolExecutor(max_workers=min(5, len(chunk))) as executor: | |
future_to_repo = { | |
executor.submit(fetch_commits_for_repo, repo_id, kind, username, selected_year): repo_id | |
for repo_id in chunk | |
} | |
for future in as_completed(future_to_repo): | |
repo_commits, repo_count = future.result() | |
if repo_commits: | |
all_commit_dates.extend(repo_commits) | |
total_commits += repo_count | |
# Update progress | |
progress = min(1.0, (i + len(chunk)) / max(1, len(repo_ids))) | |
progress_bar.progress(progress) | |
# Complete progress | |
progress_bar.progress(1.0) | |
commits_by_type[kind] = all_commit_dates | |
commit_counts_by_type[kind] = total_commits | |
except Exception as e: | |
st.warning(f"Error fetching {kind}s for {username}: {str(e)}") | |
commits_by_type[kind] = [] | |
commit_counts_by_type[kind] = 0 | |
# Calculate total commits across all types | |
total_commits = sum(commit_counts_by_type.values()) | |
st.subheader(f"{username}'s Activity in {selected_year}") | |
# Profile information | |
profile_col1, profile_col2 = st.columns([1, 3]) | |
with profile_col1: | |
# Try to get avatar | |
try: | |
avatar_url = f"https://huggingface.co/avatars/{username}" | |
st.image(avatar_url, width=150) | |
except: | |
st.info("No profile image available") | |
with profile_col2: | |
st.metric("Total Commits", total_commits) | |
# Show contributor rank if in top owners | |
for owner, count in top_owners: | |
if owner.lower() == username.lower(): | |
st.metric("Spaces Count", count) | |
break | |
st.markdown(f"[View Profile on Hugging Face](https://huggingface.co/{username})") | |
# Create DataFrame for all commits | |
all_commits = [] | |
for commits in commits_by_type.values(): | |
all_commits.extend(commits) | |
all_df = pd.DataFrame(all_commits, columns=["date"]) | |
if not all_df.empty: | |
all_df = all_df.drop_duplicates() # Remove any duplicate dates | |
make_calendar_heatmap(all_df, "All Commits", selected_year) | |
# Metrics and heatmaps for each selected type | |
cols = st.columns(len(types_to_fetch)) if types_to_fetch else st.columns(1) | |
for i, (kind, emoji, label) in enumerate([ | |
("model", "🧠", "Models"), | |
("dataset", "📦", "Datasets"), | |
("space", "🚀", "Spaces") | |
]): | |
if kind in types_to_fetch: | |
with cols[types_to_fetch.index(kind)]: | |
try: | |
total = len(cached_list_items(username, kind)) | |
commits = commits_by_type.get(kind, []) | |
commit_count = commit_counts_by_type.get(kind, 0) | |
df_kind = pd.DataFrame(commits, columns=["date"]) | |
if not df_kind.empty: | |
df_kind = df_kind.drop_duplicates() # Remove any duplicate dates | |
st.metric(f"{emoji} {label}", total) | |
st.metric(f"Commits in {selected_year}", commit_count) | |
make_calendar_heatmap(df_kind, f"{label} Commits", selected_year) | |
except Exception as e: | |
st.warning(f"Error processing {label}: {str(e)}") | |
st.metric(f"{emoji} {label}", 0) | |
st.metric(f"Commits in {selected_year}", 0) | |
make_calendar_heatmap(pd.DataFrame(), f"{label} Commits", selected_year) | |
else: | |
st.info("Please select an account from the sidebar to view contributions.") |