Spaces:
Sleeping
Sleeping
Limit to 2 options
Browse files
app.py
CHANGED
@@ -111,7 +111,7 @@ def prepare(raw_idx, lang, text_embeddings, class_order, randomize_images):
|
|
111 |
return prepare(raw_idx, lang, text_embeddings, class_order, randomize_images)
|
112 |
|
113 |
similarity = (text_embeddings @ image_features.cpu().numpy().T).squeeze()
|
114 |
-
choices = np.argsort(similarity)[-
|
115 |
else:
|
116 |
choices = list(reversed(precomputed_results[lang][idx][img_idx])) # precomputing script uses torch.topk which sorts in reverse here
|
117 |
if idx not in choices:
|
@@ -121,7 +121,7 @@ def prepare(raw_idx, lang, text_embeddings, class_order, randomize_images):
|
|
121 |
numpy.random.shuffle(choices)
|
122 |
|
123 |
choice_names = [class_labels[idx] for idx in choices]
|
124 |
-
choice_values = [0, 1
|
125 |
|
126 |
model_choice_idx = choices.index(model_choice_idx)
|
127 |
model_choice = [choice_names[model_choice_idx], choice_values[model_choice_idx]]
|
@@ -160,7 +160,7 @@ def reroll(raw_idx, lang, text_embeddings, class_order, randomize_images):
|
|
160 |
return prepare(raw_idx, lang, text_embeddings, class_order, randomize_images)
|
161 |
|
162 |
similarity = (text_embeddings @ image_features.cpu().numpy().T).squeeze()
|
163 |
-
choices = np.argsort(similarity)[-
|
164 |
else:
|
165 |
choices = list(reversed(precomputed_results[lang][idx][img_idx])) # precomputing script uses torch.topk which sorts in reverse here
|
166 |
if idx not in choices:
|
@@ -170,7 +170,7 @@ def reroll(raw_idx, lang, text_embeddings, class_order, randomize_images):
|
|
170 |
numpy.random.shuffle(choices)
|
171 |
|
172 |
choice_names = [class_labels[idx] for idx in choices]
|
173 |
-
choice_values = [0, 1
|
174 |
|
175 |
model_choice_idx = choices.index(model_choice_idx)
|
176 |
model_choice = [choice_names[model_choice_idx], choice_values[model_choice_idx]]
|
|
|
111 |
return prepare(raw_idx, lang, text_embeddings, class_order, randomize_images)
|
112 |
|
113 |
similarity = (text_embeddings @ image_features.cpu().numpy().T).squeeze()
|
114 |
+
choices = np.argsort(similarity)[-2:].tolist()
|
115 |
else:
|
116 |
choices = list(reversed(precomputed_results[lang][idx][img_idx])) # precomputing script uses torch.topk which sorts in reverse here
|
117 |
if idx not in choices:
|
|
|
121 |
numpy.random.shuffle(choices)
|
122 |
|
123 |
choice_names = [class_labels[idx] for idx in choices]
|
124 |
+
choice_values = [0, 1]
|
125 |
|
126 |
model_choice_idx = choices.index(model_choice_idx)
|
127 |
model_choice = [choice_names[model_choice_idx], choice_values[model_choice_idx]]
|
|
|
160 |
return prepare(raw_idx, lang, text_embeddings, class_order, randomize_images)
|
161 |
|
162 |
similarity = (text_embeddings @ image_features.cpu().numpy().T).squeeze()
|
163 |
+
choices = np.argsort(similarity)[-2:].tolist()
|
164 |
else:
|
165 |
choices = list(reversed(precomputed_results[lang][idx][img_idx])) # precomputing script uses torch.topk which sorts in reverse here
|
166 |
if idx not in choices:
|
|
|
170 |
numpy.random.shuffle(choices)
|
171 |
|
172 |
choice_names = [class_labels[idx] for idx in choices]
|
173 |
+
choice_values = [0, 1]
|
174 |
|
175 |
model_choice_idx = choices.index(model_choice_idx)
|
176 |
model_choice = [choice_names[model_choice_idx], choice_values[model_choice_idx]]
|