nlp-project / train.py
kohlin's picture
Initial Commit
978a5b4
raw
history blame
1.57 kB
import torch
from transformers import AutoTokenizer, AutoModelForTokenClassification, TrainingArguments, Trainer
from datasets import load_dataset, load_metric
# Load dataset
dataset = load_dataset("conll2003")
# Load tokenizer
model_checkpoint = "dbmdz/bert-large-cased-finetuned-conll03-english"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
# Tokenize the dataset
def tokenize_and_align_labels(examples):
tokenized_inputs = tokenizer(examples["tokens"], truncation=True, is_split_into_words=True)
return tokenized_inputs
tokenized_datasets = dataset.map(tokenize_and_align_labels, batched=True)
# Load model
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint, num_labels=9)
# Training arguments
training_args = TrainingArguments(
output_dir="./ner_model",
evaluation_strategy="epoch",
save_strategy="epoch",
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=3,
weight_decay=0.01,
)
# Load metric
metric = load_metric("seqeval")
def compute_metrics(eval_pred):
predictions, labels = eval_pred
return metric.compute(predictions=predictions.argmax(-1), references=labels)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
compute_metrics=compute_metrics,
)
# Train model
trainer.train()
# Save model
trainer.save_model("./ner_model")
tokenizer.save_pretrained("./ner_model")