assignment1 / app.py
koey811's picture
Update app.py
224b704 verified
raw
history blame
2.11 kB
import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from gtts import gTTS
import io
from PIL import Image
# Load the image captioning model
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base")
# Load the text generation model
text_generation_model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
def generate_caption(image):
# Generate the caption for the uploaded image
caption = caption_model(image)[0]["generated_text"]
return caption
def generate_story(caption):
# Generate the story based on the caption
input_ids = tokenizer.encode(caption, return_tensors="pt")
output = text_generation_model.generate(input_ids, max_length=100, num_return_sequences=1)
story = tokenizer.decode(output[0], skip_special_tokens=True)
return story
def convert_to_audio(story):
# Convert the story to audio using gTTS
tts = gTTS(text=story, lang="en")
audio_bytes = io.BytesIO()
tts.write_to_fp(audio_bytes)
audio_bytes.seek(0)
return audio_bytes
def main():
st.title("Storytelling Application")
# File uploader for the image (restricted to JPG)
uploaded_image = st.file_uploader("Upload an image", type=["jpg"])
if uploaded_image is not None:
# Convert the uploaded image to PIL image
image = Image.open(uploaded_image)
# Display the uploaded image
st.image(image, caption="Uploaded Image", use_column_width=True)
# Generate the caption for the image
caption = generate_caption(image)
st.subheader("Generated Caption:")
st.write(caption)
# Generate the story based on the caption
story = generate_story(caption)
st.subheader("Generated Story:")
st.write(story)
# Convert the story to audio
audio_bytes = convert_to_audio(story)
# Display the audio player
st.audio(audio_bytes, format="audio/mp3")
if __name__ == "__main__":
main()