Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
from gtts import gTTS | |
import io | |
from PIL import Image | |
# Load the image captioning model | |
caption_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") | |
# Load the text generation model | |
text_generation_model = AutoModelForCausalLM.from_pretrained("gpt2") | |
tokenizer = AutoTokenizer.from_pretrained("gpt2") | |
def generate_caption(image): | |
# Generate the caption for the uploaded image | |
caption = caption_model(image)[0]["generated_text"] | |
return caption | |
def generate_story(caption): | |
# Generate the story based on the caption | |
input_ids = tokenizer.encode(caption, return_tensors="pt") | |
output = text_generation_model.generate(input_ids, max_length=100, num_return_sequences=1) | |
story = tokenizer.decode(output[0], skip_special_tokens=True) | |
return story | |
def convert_to_audio(story): | |
# Convert the story to audio using gTTS | |
tts = gTTS(text=story, lang="en") | |
audio_bytes = io.BytesIO() | |
tts.write_to_fp(audio_bytes) | |
audio_bytes.seek(0) | |
return audio_bytes | |
def main(): | |
st.title("Storytelling Application") | |
# File uploader for the image (restricted to JPG) | |
uploaded_image = st.file_uploader("Upload an image", type=["jpg"]) | |
if uploaded_image is not None: | |
# Convert the uploaded image to PIL image | |
image = Image.open(uploaded_image) | |
# Display the uploaded image | |
st.image(image, caption="Uploaded Image", use_column_width=True) | |
# Generate the caption for the image | |
caption = generate_caption(image) | |
st.subheader("Generated Caption:") | |
st.write(caption) | |
# Generate the story based on the caption | |
story = generate_story(caption) | |
st.subheader("Generated Story:") | |
st.write(story) | |
# Convert the story to audio | |
audio_bytes = convert_to_audio(story) | |
# Display the audio player | |
st.audio(audio_bytes, format="audio/mp3") | |
if __name__ == "__main__": | |
main() |