Spaces:
Running
Running
Dana Atzil
commited on
Commit
·
c35872d
1
Parent(s):
bfa1074
fix display
Browse files- streamlit_app_LDA.py +10 -5
streamlit_app_LDA.py
CHANGED
@@ -21,8 +21,10 @@ num_topics = st.sidebar.slider("Number of Topics", min_value=2, max_value=20, va
|
|
21 |
num_passes = st.sidebar.slider("Number of Passes", min_value=5, max_value=50, value=10)
|
22 |
lda_document_is = st.radio("A 'Document' in the topic model will correspond to a:", ("self-state", "segment"))
|
23 |
seed_value = st.sidebar.number_input("Random Seed", value=42)
|
24 |
-
num_top_elements_to_show = st.sidebar.slider("# top element to show in a topic", min_value=2, max_value=15, value=5)
|
25 |
|
|
|
|
|
|
|
26 |
# ---------------------------
|
27 |
# Load Data
|
28 |
# ---------------------------
|
@@ -138,8 +140,11 @@ st.text(output_str)
|
|
138 |
# Prepare and Display pyLDAvis Visualization
|
139 |
# ---------------------------
|
140 |
st.header("Interactive Topic Visualization")
|
141 |
-
|
142 |
-
|
143 |
-
|
|
|
|
|
|
|
144 |
html_string = pyLDAvis.prepared_data_to_html(vis_data)
|
145 |
-
components.html(html_string, width=
|
|
|
21 |
num_passes = st.sidebar.slider("Number of Passes", min_value=5, max_value=50, value=10)
|
22 |
lda_document_is = st.radio("A 'Document' in the topic model will correspond to a:", ("self-state", "segment"))
|
23 |
seed_value = st.sidebar.number_input("Random Seed", value=42)
|
|
|
24 |
|
25 |
+
st.sidebar.header("Display")
|
26 |
+
num_top_elements_to_show = st.sidebar.slider("# top element to show in a topic", min_value=2, max_value=15, value=5)
|
27 |
+
show_long_elements = st.checkbox("Show full element name")
|
28 |
# ---------------------------
|
29 |
# Load Data
|
30 |
# ---------------------------
|
|
|
140 |
# Prepare and Display pyLDAvis Visualization
|
141 |
# ---------------------------
|
142 |
st.header("Interactive Topic Visualization")
|
143 |
+
if not show_long_elements:
|
144 |
+
vis_dict = {i: element_short_desc_map[v] for i, v in dictionary.items()}
|
145 |
+
vis_dictionary = corpora.dictionary.Dictionary([[new_token] for new_token in vis_dict.values()])
|
146 |
+
vis_data = gensimvis.prepare(lda_model, corpus, vis_dictionary)
|
147 |
+
else:
|
148 |
+
vis_data = gensimvis.prepare(lda_model, corpus, dictionary)
|
149 |
html_string = pyLDAvis.prepared_data_to_html(vis_data)
|
150 |
+
components.html(html_string, width=2300, height=800, scrolling=True)
|